# Foundations of Quantum Programming 

# Lecture 5: Analysis of Quantum Programs 

Mingsheng Ying

University of Technology Sydney, Australia

## Outline

Analysis of Quantum Loops
Quantum while-Loops with Unitary Bodies General Quantum while-Loops

## Outline

Analysis of Quantum Loops
Quantum while-Loops with Unitary Bodies General Quantum while-Loops

## Quantum while-Loops with Unitary Bodies

$$
S \equiv \text { while } M[\bar{q}]=1 \text { do } \bar{q}:=U[\bar{q}] \text { od }
$$

where:

- $\bar{q}$ denotes quantum register $q_{1}, \ldots, q_{n}$, its state Hilbert space:

$$
\mathcal{H}=\bigotimes_{i=1}^{n} \mathcal{H}_{q_{i}}
$$

## Quantum while-Loops with Unitary Bodies

$$
S \equiv \text { while } M[\bar{q}]=1 \text { do } \bar{q}:=U[\bar{q}] \text { od }
$$

where:

- $\bar{q}$ denotes quantum register $q_{1}, \ldots, q_{n}$, its state Hilbert space:

$$
\mathcal{H}=\bigotimes_{i=1}^{n} \mathcal{H}_{q_{i}}
$$

- the loop body is unitary transformation $\bar{q}:=U[\bar{q}]$ in $\mathcal{H}$;


## Quantum while-Loops with Unitary Bodies

$$
S \equiv \text { while } M[\bar{q}]=1 \text { do } \bar{q}:=U[\bar{q}] \text { od }
$$

where:

- $\bar{q}$ denotes quantum register $q_{1}, \ldots, q_{n}$, its state Hilbert space:

$$
\mathcal{H}=\bigotimes_{i=1}^{n} \mathcal{H}_{q_{i}}
$$

- the loop body is unitary transformation $\bar{q}:=U[\bar{q}]$ in $\mathcal{H}$;
- the yes-no measurement $M=\left\{M_{0}, M_{1}\right\}$ in the loop guard is projective: $M_{0}=P_{X^{\perp}}, M_{1}=P_{X}$ with $X$ being a subspace of $\mathcal{H}$, $X^{\perp}$ being the orthocomplement of $X$.


## Execution of Quantum Loops

- Initial step: Performs measurement $M$ on the input state $\rho$ :


## Execution of Quantum Loops

- Initial step: Performs measurement $M$ on the input state $\rho$ :
- The loop terminates with probability $p_{T}^{(1)}(\rho)=\operatorname{tr}\left(P_{X^{\perp}} \rho\right)$. The output at this step:

$$
\rho_{\text {out }}^{(1)}=\frac{P_{X^{\perp}} \rho P_{X^{\perp}}}{p_{T}^{(1)}(\rho)}
$$

## Execution of Quantum Loops

- Initial step: Performs measurement $M$ on the input state $\rho$ :
- The loop terminates with probability $p_{T}^{(1)}(\rho)=\operatorname{tr}\left(P_{X^{\perp}} \rho\right)$. The output at this step:

$$
\rho_{\text {out }}^{(1)}=\frac{P_{X^{\perp}} \rho P_{X^{\perp}}}{p_{T}^{(1)}(\rho)} .
$$

- The loop continues with probability
$p_{N T}^{(1)}(\rho)=1-p_{T}^{(1)}(\rho)=\operatorname{tr}\left(P_{X} \rho\right)$. The program state after the measurement:

$$
\rho_{\text {mid }}^{(1)}=\frac{P_{X} \rho P_{X}}{p_{N T}^{(1)}(\rho)}
$$

## Execution of Quantum Loops

- Initial step: Performs measurement $M$ on the input state $\rho$ :
- The loop terminates with probability $p_{T}^{(1)}(\rho)=\operatorname{tr}\left(P_{X^{\perp}} \rho\right)$. The output at this step:

$$
\rho_{\text {out }}^{(1)}=\frac{P_{X^{\perp}} \rho P_{X^{\perp}}}{p_{T}^{(1)}(\rho)} .
$$

- The loop continues with probability
$p_{N T}^{(1)}(\rho)=1-p_{T}^{(1)}(\rho)=\operatorname{tr}\left(P_{X} \rho\right)$. The program state after the measurement:

$$
\rho_{\text {mid }}^{(1)}=\frac{P_{X} \rho P_{X}}{p_{N T}^{(1)}(\rho)}
$$

- $\rho_{\text {mid }}^{(1)}$ is fed to the unitary operation $U$ :

$$
\rho_{i n}^{(2)}=U \rho_{m i d}^{(1)} U^{\dagger}
$$

is returned. $\rho_{\text {in }}^{(2)}$ will be used as the input state in the next step.

- Induction step: Suppose the loop has run $n$ steps, it did not terminate at the $n$th step: $p_{N T}^{(n)}>0$. If $\rho_{i n}^{(n+1)}$ is the program state at the end of the $n$th step, then in the $(n+1)$ th step:
- Induction step: Suppose the loop has run $n$ steps, it did not terminate at the $n$th step: $p_{N T}^{(n)}>0$. If $\rho_{\text {in }}^{(n+1)}$ is the program state at the end of the $n$th step, then in the $(n+1)$ th step:
- The termination probability: $p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left(P_{X^{\perp}} \rho_{\text {in }}^{(n+1)}\right)$. The output at this step is

$$
\rho_{\text {out }}^{(n+1)}=\frac{P_{X^{\perp}} \rho_{\text {in }}^{(n+1)} P_{X^{\perp}}}{p_{T}^{(n+1)}(\rho)} .
$$

- Induction step: Suppose the loop has run $n$ steps, it did not terminate at the $n$th step: $p_{N T}^{(n)}>0$. If $\rho_{i n}^{(n+1)}$ is the program state at the end of the $n$th step, then in the $(n+1)$ th step:
- The termination probability: $p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left(P_{X^{\perp}} \rho_{\text {in }}^{(n+1)}\right)$. The output at this step is

$$
\rho_{\text {out }}^{(n+1)}=\frac{P_{X^{\perp}} \rho_{\text {in }}^{(n+1)} P_{X^{\perp}}}{p_{T}^{(n+1)}(\rho)} .
$$

- The loop continues to perform the unitary operation $U$ on the post-measurement state

$$
\rho_{\text {mid }}^{(n+1)}=\frac{P_{X} \rho_{i n}^{(n+1)} P_{X}}{p_{N T}^{(n+1)}(\rho)}
$$

with probability $p_{N T}^{(n+1)}(\rho)=1-p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left(P_{X} \rho_{\text {in }}^{(n+1)}\right)$. The state $\rho_{\text {in }}^{(n+2)}=U \rho_{\text {mid }}^{(n+1)} U^{\dagger}$ will be returned. It will be the input of the $(n+2)$ th step.

## Termination

1. If probability $p_{N T}^{(n)}(\rho)=0$ for some positive integer $n$, then the loop terminates from input $\rho$.

## Termination

1. If probability $p_{N T}^{(n)}(\rho)=0$ for some positive integer $n$, then the loop terminates from input $\rho$.
2. The nontermination probability of the loop from input $\rho$ is

$$
p_{N T}(\rho)=\lim _{n \rightarrow \infty} p_{N T}^{(\leq n)}(\rho)
$$

where

$$
p_{N T}^{(\leq n)}(\rho)=\prod_{i=1}^{n} p_{N T}^{(i)}(\rho)
$$

is the probability that the loop does not terminate after $n$ steps.

## Terminating

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input $\rho \in \mathcal{D}(\mathcal{H})$.

## Termination

1. If probability $p_{N T}^{(n)}(\rho)=0$ for some positive integer $n$, then the loop terminates from input $\rho$.
2. The nontermination probability of the loop from input $\rho$ is

$$
p_{N T}(\rho)=\lim _{n \rightarrow \infty} p_{N T}^{(\leq n)}(\rho)
$$

where

$$
p_{N T}^{(\leq n)}(\rho)=\prod_{i=1}^{n} p_{N T}^{(i)}(\rho)
$$

is the probability that the loop does not terminate after $n$ steps.
3. The loop almost surely terminates from input $\rho$ whenever nontermination probability $p_{N T}(\rho)=0$.

## Terminating

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input $\rho \in \mathcal{D}(\mathcal{H})$.

## Computed Function

- The function $\mathcal{F}: \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho)=\sum_{n=1}^{\infty} p_{N T}^{(\leq n-1)}(\rho) \cdot p_{T}^{(n)}(\rho) \cdot \rho_{o u t}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

## Computed Function

- The function $\mathcal{F}: \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho)=\sum_{n=1}^{\infty} p_{N T}^{(\leq n-1)}(\rho) \cdot p_{T}^{(n)}(\rho) \cdot \rho_{\text {out }}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

- For operator $A$ in Hilbert space $\mathcal{H}$, subspace $X$ of $\mathcal{H}$, the restriction of $A$ in $X$ :

$$
A_{X}=P_{X} A P_{X}
$$

## Computed Function

- The function $\mathcal{F}: \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho)=\sum_{n=1}^{\infty} p_{N T}^{(\leq n-1)}(\rho) \cdot p_{T}^{(n)}(\rho) \cdot \rho_{o u t}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

- For operator $A$ in Hilbert space $\mathcal{H}$, subspace $X$ of $\mathcal{H}$, the restriction of $A$ in $X$ :

$$
\begin{gathered}
A_{X}=P_{X} A P_{X} \\
p_{N T}^{(\leq n)}(\rho)=\operatorname{tr}\left(U_{X}^{n-1} \rho_{X} U_{X}^{+n-1}\right)
\end{gathered}
$$

## Computed Function

- The function $\mathcal{F}: \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho)=\sum_{n=1}^{\infty} p_{N T}^{(\leq n-1)}(\rho) \cdot p_{T}^{(n)}(\rho) \cdot \rho_{\text {out }}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

- For operator $A$ in Hilbert space $\mathcal{H}$, subspace $X$ of $\mathcal{H}$, the restriction of $A$ in $X$ :

$$
\begin{gathered}
A_{X}=P_{X} A P_{X} \\
p_{N T}^{(\leq n)}(\rho)=\operatorname{tr}\left(U_{X}^{n-1} \rho_{X} U_{X}^{\dagger n-1}\right) \\
\mathcal{F}(\rho)=P_{X^{\perp}} \rho P_{X^{\perp}}+P_{X^{\perp}} U\left(\sum_{n=0}^{\infty} U_{X}^{n} \rho_{X} U_{X}^{\dagger}\right) U^{\dagger} P_{X^{\perp}}
\end{gathered}
$$

## Termination Analysis

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the loop terminates from input $\rho$ if and only if it terminates from input $\rho_{i}$ for all $i$.


## Termination Analysis

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the loop terminates from input $\rho$ if and only if it terminates from input $\rho_{i}$ for all $i$.
- A quantum loop is terminating if and only if it terminates from all pure input states.
- Let $\left\{\left|m_{1}\right\rangle, \ldots,\left|m_{l}\right\rangle\right\}$ be an orthonormal basis of $\mathcal{H}$ such that

$$
\sum_{i=1}^{k}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X}, \quad \sum_{i=k+1}^{l}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X^{\perp}}
$$

- Let $\left\{\left|m_{1}\right\rangle, \ldots,\left|m_{l}\right\rangle\right\}$ be an orthonormal basis of $\mathcal{H}$ such that

$$
\sum_{i=1}^{k}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X}, \quad \sum_{i=k+1}^{l}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X^{\perp}}
$$

- Write $|\psi\rangle_{X}$ for (the vector representation of) projection $P_{X}|\psi\rangle$.
- Let $\left\{\left|m_{1}\right\rangle, \ldots,\left|m_{l}\right\rangle\right\}$ be an orthonormal basis of $\mathcal{H}$ such that

$$
\sum_{i=1}^{k}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X}, \quad \sum_{i=k+1}^{l}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X^{\perp}}
$$

- Write $|\psi\rangle_{X}$ for (the vector representation of) projection $P_{X}|\psi\rangle$.
- The following statements are equivalent:
- Let $\left\{\left|m_{1}\right\rangle, \ldots,\left|m_{l}\right\rangle\right\}$ be an orthonormal basis of $\mathcal{H}$ such that

$$
\sum_{i=1}^{k}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X}, \quad \sum_{i=k+1}^{l}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X^{\perp}}
$$

- Write $|\psi\rangle_{X}$ for (the vector representation of) projection $P_{X}|\psi\rangle$.
- The following statements are equivalent:

1. The loop terminates from input $\rho \in \mathcal{D}(\mathcal{H})$;

- Let $\left\{\left|m_{1}\right\rangle, \ldots,\left|m_{l}\right\rangle\right\}$ be an orthonormal basis of $\mathcal{H}$ such that

$$
\sum_{i=1}^{k}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X}, \quad \sum_{i=k+1}^{l}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X^{\perp}}
$$

- Write $|\psi\rangle_{X}$ for (the vector representation of) projection $P_{X}|\psi\rangle$.
- The following statements are equivalent:

1. The loop terminates from input $\rho \in \mathcal{D}(\mathcal{H})$;
2. $U_{X}^{n} \rho_{X} U_{X}^{\dagger n}=\mathbf{0}_{k \times k}$ for some nonnegative integer $n$, where $\mathbf{0}_{k \times k}$ is the $(k \times k)$-zero matrix.

- Let $\left\{\left|m_{1}\right\rangle, \ldots,\left|m_{l}\right\rangle\right\}$ be an orthonormal basis of $\mathcal{H}$ such that

$$
\sum_{i=1}^{k}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X}, \quad \sum_{i=k+1}^{l}\left|m_{i}\right\rangle\left\langle m_{i}\right|=P_{X^{\perp}}
$$

- Write $|\psi\rangle_{X}$ for (the vector representation of) projection $P_{X}|\psi\rangle$.
- The following statements are equivalent:

1. The loop terminates from input $\rho \in \mathcal{D}(\mathcal{H})$;
2. $U_{X}^{n} \rho_{X} U_{X}^{\dagger n}=\mathbf{0}_{k \times k}$ for some nonnegative integer $n$, where $\mathbf{0}_{k \times k}$ is the $(k \times k)$-zero matrix.

- The loop terminates from pure input state $|\psi\rangle$ if and only if $U_{X}^{n}|\psi\rangle_{X}=\mathbf{0}$ for some nonnegative integer $n$, where $\mathbf{0}$ is the $k$-dimensional zero vector.


## From Quantum Loop to Classical Loop

- The condition $U_{X}^{n}|\psi\rangle_{X}=\mathbf{0}$ is a termination condition for the loop:

$$
\text { while } \mathbf{v} \neq \mathbf{0} \text { do } \mathbf{v}:=U_{X} \mathbf{v} \text { od }
$$

This loop must be understood as a classical computation in the field of complex numbers.

## From Quantum Loop to Classical Loop

- The condition $U_{X}^{n}|\psi\rangle_{X}=\mathbf{0}$ is a termination condition for the loop:

$$
\text { while } \mathbf{v} \neq \mathbf{0} \text { do } \mathbf{v}:=U_{X} \mathbf{v} \text { od }
$$

This loop must be understood as a classical computation in the field of complex numbers.

- Let $S$ be a nonsingular $(k \times k)$-complex matrix. The following statements are equivalent:


## From Quantum Loop to Classical Loop

- The condition $U_{X}^{n}|\psi\rangle_{X}=\mathbf{0}$ is a termination condition for the loop:

$$
\text { while } \mathbf{v} \neq \mathbf{0} \text { do } \mathbf{v}:=U_{X} \mathbf{v} \text { od }
$$

This loop must be understood as a classical computation in the field of complex numbers.

- Let $S$ be a nonsingular $(k \times k)$-complex matrix. The following statements are equivalent:

1. The above classical loop (with $\mathbf{v} \in \mathbf{C}^{k}$ ) terminates from input $\mathbf{v}_{0} \in \mathbf{C}^{k}$.

## From Quantum Loop to Classical Loop

- The condition $U_{X}^{n}|\psi\rangle_{X}=\mathbf{0}$ is a termination condition for the loop:

$$
\text { while } \mathbf{v} \neq \mathbf{0} \text { do } \mathbf{v}:=U_{X} \mathbf{v} \text { od }
$$

This loop must be understood as a classical computation in the field of complex numbers.

- Let $S$ be a nonsingular $(k \times k)$-complex matrix. The following statements are equivalent:

1. The above classical loop (with $\mathbf{v} \in \mathbf{C}^{k}$ ) terminates from input $\mathbf{v}_{0} \in \mathbf{C}^{k}$.
2. The classical loop:
while $\mathbf{v} \neq \mathbf{0}$ do $\mathbf{v}:=\left(S U_{X} S^{-1}\right) \mathbf{v}$ od
(with $\mathbf{v} \in \mathbf{C}^{k}$ ) terminates from input $S \mathbf{v}_{0}$.

## Jordan Normal Form Theorem

For any $(k \times k)$-complex matrix $A$, there is a nonsingular ( $k \times k$ )-complex matrix $S$ such that

$$
A=S J(A) S^{-1}
$$

where

$$
\begin{aligned}
J(A) & =\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right) \\
& =\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \ldots, J_{k_{l}}\left(\lambda_{l}\right)\right) \\
& =\left(\begin{array}{lllll}
J_{k_{1}}\left(\lambda_{1}\right) & & & & \\
& J_{k_{2}}\left(\lambda_{2}\right) & & & \\
& & \ddots & & \\
& & & \ddots & \\
& & & & J_{k_{l}}\left(\lambda_{l}\right)
\end{array}\right)
\end{aligned}
$$

is the Jordan normal form of $A$,

## Jordan Normal Form Theorem (Continued)

$\sum_{i=1}^{l} k_{i}=k$,

$$
J_{k_{i}}\left(\lambda_{i}\right)=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & & & \\
& \lambda_{i} & 1 & & \\
& & \ddots & \ddots & \\
& & & \ddots & 1 \\
& & & & \lambda_{i}
\end{array}\right)
$$

is a $\left(k_{i} \times k_{i}\right)$-Jordan block for each $1 \leq i \leq l$.

## Technical Lemma

Let $J_{r}(\lambda)$ be a $(r \times r)$-Jordan block, $\mathbf{v}$ an $r$-dimensional complex vector. Then

$$
J_{r}(\lambda)^{n} \mathbf{v}=\mathbf{0}
$$

for some nonnegative integer $n$ if and only if $\lambda=0$ or $\mathbf{v}=\mathbf{0}$.

Theorem

- The Jordan decomposition of $U_{X}: U_{X}=S J\left(U_{X}\right) S^{-1}$, where

$$
J\left(U_{X}\right)=\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right)=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \ldots, J_{k_{l}}\left(\lambda_{l}\right)\right)
$$

## Theorem

- The Jordan decomposition of $U_{X}: U_{X}=S J\left(U_{X}\right) S^{-1}$, where

$$
J\left(U_{X}\right)=\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right)=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \ldots, J_{k_{l}}\left(\lambda_{l}\right)\right)
$$

- Let $S^{-1}|\psi\rangle_{X}$ be divided into $l$ sub-vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{l}$ such that the length of $\mathbf{v}_{i}$ is $k_{i}$.


## Corollary

The quantum loop is terminating if and only if $U_{X}$ has only zero eigenvalues.

## Theorem

- The Jordan decomposition of $U_{X}: U_{X}=S J\left(U_{X}\right) S^{-1}$, where

$$
J\left(U_{X}\right)=\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right)=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \ldots, J_{k_{l}}\left(\lambda_{l}\right)\right)
$$

- Let $S^{-1}|\psi\rangle_{X}$ be divided into $l$ sub-vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{l}$ such that the length of $\mathbf{v}_{i}$ is $k_{i}$.
- Then: the quantum loop terminates from input $|\psi\rangle$ if and only if for each $1 \leq i \leq l, \lambda_{i}=0$ or $\mathbf{v}_{i}=\mathbf{0}$.

Corollary
The quantum loop is terminating if and only if $U_{X}$ has only zero eigenvalues.

## Almost sure termination

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the quantum loop almost surely terminates from input $\rho$ if and only if it almost surely terminates from input $\rho_{i}$ for all $i$.


## Almost sure termination

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the quantum loop almost surely terminates from input $\rho$ if and only if it almost surely terminates from input $\rho_{i}$ for all $i$.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.


## Almost sure termination

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the quantum loop almost surely terminates from input $\rho$ if and only if it almost surely terminates from input $\rho_{i}$ for all $i$.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
- The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if

$$
\lim _{n \rightarrow \infty} \| U_{X}^{n}|\psi\rangle \|=0
$$

## Almost sure termination

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the quantum loop almost surely terminates from input $\rho$ if and only if it almost surely terminates from input $\rho_{i}$ for all $i$.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
- The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if

$$
\left.\lim _{n \rightarrow \infty}\left|\| U_{X}^{n}\right| \psi\right\rangle \|=0
$$

- The quantum loop almost surely terminates from input $|\psi\rangle$ if and only if for each $1 \leq i \leq l,\left|\lambda_{i}\right|<1$ or $\mathbf{v}_{i}=\mathbf{0}$.


## Almost sure termination

- Let $\rho=\sum_{i} p_{i} \rho_{i}$ with $p_{i}>0$ for all $i$. Then the quantum loop almost surely terminates from input $\rho$ if and only if it almost surely terminates from input $\rho_{i}$ for all $i$.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
- The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if

$$
\left.\lim _{n \rightarrow \infty}\left|\| U_{X}^{n}\right| \psi\right\rangle \|=0
$$

- The quantum loop almost surely terminates from input $|\psi\rangle$ if and only if for each $1 \leq i \leq l,\left|\lambda_{i}\right|<1$ or $\mathbf{v}_{i}=\mathbf{0}$.
- The quantum loop is almost surely terminating if and only if all the eigenvalues of $U_{X}$ have norms less than 1 .


## General Quantum while-Loops

$$
\text { while } M[\bar{q}]=1 \text { do } S \text { od }
$$

where:

- $M=\left\{M_{0}, M_{1}\right\}$ is a yes-no measurement;
while $M[\bar{q}]=1$ do $\bar{q}:=\mathcal{E}[\bar{q}]$ od.


## General Quantum while-Loops

$$
\text { while } M[\bar{q}]=1 \text { do } S \text { od }
$$

where:

- $M=\left\{M_{0}, M_{1}\right\}$ is a yes-no measurement;
- $\bar{q}$ is a quantum register;

$$
\text { while } M[\bar{q}]=1 \text { do } \bar{q}:=\mathcal{E}[\bar{q}] \text { od. }
$$

Notation
For $i=0,1$, define quantum operation $\mathcal{E}_{i}$ :

$$
\mathcal{E}_{i}(\sigma)=M_{i} \sigma M_{i}^{\dagger}
$$

## General Quantum while-Loops

$$
\text { while } M[\bar{q}]=1 \text { do } S \text { od }
$$

where:

- $M=\left\{M_{0}, M_{1}\right\}$ is a yes-no measurement;
- $\bar{q}$ is a quantum register;
- the loop body $S$ is a general quantum program.

$$
\text { while } M[\bar{q}]=1 \text { do } \bar{q}:=\mathcal{E}[\bar{q}] \text { od. }
$$

Notation
For $i=0,1$, define quantum operation $\mathcal{E}_{i}$ :

$$
\mathcal{E}_{i}(\sigma)=M_{i} \sigma M_{i}^{\dagger}
$$

## Execution of Loops

Initial step: Perform the termination measurement $\left\{M_{0}, M_{1}\right\}$ on the input state $\rho$.

- The probability that the program terminates (the measurement outcome is 0 ):

$$
p_{T}^{(1)}(\rho)=\operatorname{tr}\left[\mathcal{E}_{0}(\rho)\right] .
$$

The program state after termination:

$$
\rho_{\text {out }}^{(1)}=\mathcal{E}_{0}(\rho) / p_{T}^{(1)}(\rho) .
$$

Encode probability $p_{T}^{(1)}(\rho)$ and density operator $\rho_{\text {out }}^{(1)}$ into a partial density operator

$$
p_{T}^{(1)}(\rho) \rho_{o u t}^{(1)}=\mathcal{E}_{0}(\rho)
$$

So, $\mathcal{E}_{0}(\rho)$ is the partial output state at the first step.

## Execution of Loops (Continued)

- The probability that the program does not terminate (the measurement outcome is 1 ):

$$
p_{N T}^{(1)}(\rho)=\operatorname{tr}\left[\mathcal{E}_{1}(\rho)\right]
$$

The program state after the outcome 1 is obtained:

$$
\rho_{m i d}^{(1)}=\mathcal{E}_{1}(\rho) / p_{N T}^{(1)}(\rho) .
$$

It is transformed by the loop body $\mathcal{E}$ to

$$
\rho_{\text {in }}^{(2)}=\left(\mathcal{E} \circ \mathcal{E}_{1}\right)(\rho) / p_{N T}^{(1)}(\rho),
$$

upon which the second step will be executed.
Combine $p_{N T}^{(1)}$ and $\rho_{\text {in }}^{(2)}$ into a partial density operator

$$
p_{N T}^{(1)}(\rho) \rho_{i n}^{(2)}=\left(\mathcal{E} \circ \mathcal{E}_{1}\right)(\rho) .
$$

## Execution of Loops (Continued)

Induction step: Write $p_{N T}^{(\leq n)}=\prod_{i=1}^{n} p_{N T}^{(i)}$ for the probability that the program does not terminate within $n$ steps, where $p_{N T}^{(i)}$ is the probability that the program does not terminate at the $i$ th step for every $1 \leq i \leq n$.
The program state after the $n$th measurement with outcome 1 :

$$
\rho_{m i d}^{(n)}=\frac{\left[\mathcal{E}_{1} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n-1}\right](\rho)}{p_{N T}^{(\leq n)}}
$$

It is transformed by the loop body $\mathcal{E}$ into

$$
\rho_{i n}^{(n+1)}=\frac{\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}(\rho)}{p_{N T}^{(\leq n)}} .
$$

Combine $\rho_{N T}^{(\leq n)}$ and $\rho_{i n}^{(n+1)}$ into a partial density operator

$$
p_{N T}^{(\leq n)}(\rho) \rho_{\text {in }}^{(n+1)}=\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}(\rho) .
$$

## Execution of Loops (Continued)

- The $(n+1)$ st step is executed upon $\rho_{i n}^{(n+1)}$.


## Execution of Loops (Continued)

- The $(n+1)$ st step is executed upon $\rho_{\text {in }}^{(n+1)}$.
- The probability that the program terminates at the $(n+1)$ st step:

$$
p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left[\mathcal{E}_{0}\left(\rho_{\text {in }}^{(n+1)}\right)\right] .
$$

## Execution of Loops (Continued)

- The $(n+1)$ st step is executed upon $\rho_{\text {in }}^{(n+1)}$.
- The probability that the program terminates at the $(n+1)$ st step:

$$
p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left[\mathcal{E}_{0}\left(\rho_{i n}^{(n+1)}\right)\right] .
$$

- The probability that the program does not terminate within $n$ steps but it terminates at the $(n+1)$ st step:

$$
q_{T}^{(n+1)}(\rho)=\operatorname{tr}\left(\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)\right)
$$

## Execution of Loops (Continued)

- The $(n+1)$ st step is executed upon $\rho_{\text {in }}^{(n+1)}$.
- The probability that the program terminates at the $(n+1)$ st step:

$$
p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left[\mathcal{E}_{0}\left(\rho_{i n}^{(n+1)}\right)\right] .
$$

- The probability that the program does not terminate within $n$ steps but it terminates at the $(n+1)$ st step:

$$
q_{T}^{(n+1)}(\rho)=\operatorname{tr}\left(\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)\right)
$$

- The program state after the termination:

$$
\rho_{\text {out }}^{(n+1)}=\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho) / q_{T}^{(n+1)}(\rho)
$$

## Execution of Loops (Continued)

- The $(n+1)$ st step is executed upon $\rho_{\text {in }}^{(n+1)}$.
- The probability that the program terminates at the $(n+1)$ st step:

$$
p_{T}^{(n+1)}(\rho)=\operatorname{tr}\left[\mathcal{E}_{0}\left(\rho_{i n}^{(n+1)}\right)\right] .
$$

- The probability that the program does not terminate within $n$ steps but it terminates at the $(n+1)$ st step:

$$
q_{T}^{(n+1)}(\rho)=\operatorname{tr}\left(\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)\right)
$$

- The program state after the termination:

$$
\rho_{\text {out }}^{(n+1)}=\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho) / q_{T}^{(n+1)}(\rho)
$$

- Combining $q_{T}^{(n+1)}(\rho)$ and $\rho_{\text {out }}^{(n+1)}$ yields the partial output state of the program at the $(n+1)$ st step:

$$
q_{T}^{(n+1)}(\rho) \rho_{\text {out }}^{(n+1)}=\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)
$$

## Execution of Loops (Continued)

- The probability that the program does not terminate within $(n+1)$ steps:

$$
p_{N T}^{(\leq n+1)}(\rho)=\operatorname{tr}\left(\left[\mathcal{E}_{1} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)\right) .
$$

## Execution of Loops (Continued)

- The probability that the program does not terminate within $(n+1)$ steps:

$$
p_{N T}^{(\leq n+1)}(\rho)=\operatorname{tr}\left(\left[\mathcal{E}_{1} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)\right) .
$$

## Termination

1. The quantum loop terminates from input state $\rho$ if probability $p_{N T}^{(n)}(\rho)=0$ for some positive integer $n$.

## Execution of Loops (Continued)

- The probability that the program does not terminate within $(n+1)$ steps:

$$
p_{N T}^{(\leq n+1)}(\rho)=\operatorname{tr}\left(\left[\mathcal{E}_{1} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)\right)
$$

## Termination

1. The quantum loop terminates from input state $\rho$ if probability $p_{N T}^{(n)}(\rho)=0$ for some positive integer $n$.
2. The loop almost surely terminates from input state $\rho$ if nontermination probability

$$
p_{N T}(\rho)=\lim _{n \rightarrow \infty} p_{N T}^{(\leq n)}(\rho)=0
$$

where $p_{N T}^{(\leq n)}$ is the probability that the program does not terminate within $n$ steps.

## Terminating

The quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from any input $\rho$.

## Terminating

The quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from any input $\rho$.

Computed Function
The function $\mathcal{F}: \mathcal{D}(H) \rightarrow \mathcal{D}(H)$ computed by the quantum loop:

$$
\mathcal{F}(\rho)=\sum_{n=1}^{\infty} q_{T}^{(n)}(\rho) \rho_{\text {out }}^{(n)}=\sum_{n=0}^{\infty}\left[\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n}\right](\rho)
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$, where

$$
q_{T}^{(n)}=p_{N T}^{(\leq n-1)} p_{T}^{(n)}
$$

is the probability that the program does not terminate within $n-1$ steps but it terminate at the $n$th step.

## Recursive Characterisation of Computed Function

The quantum operation $\mathcal{F}$ computed by a loop satisfies the recursive equation:

$$
\mathcal{F}(\rho)=\mathcal{E}_{0}(\rho)+\mathcal{F}\left[\left(\mathcal{E} \circ \mathcal{E}_{1}\right)(\rho)\right] .
$$

## Recursive Characterisation of Computed Function

The quantum operation $\mathcal{F}$ computed by a loop satisfies the recursive equation:

$$
\mathcal{F}(\rho)=\mathcal{E}_{0}(\rho)+\mathcal{F}\left[\left(\mathcal{E} \circ \mathcal{E}_{1}\right)(\rho)\right] .
$$

## Matrix Representation of Quantum Operations

Suppose quantum operation $\mathcal{E}$ in a $d$-dimensional Hilbert space $\mathcal{H}$ has the Kraus operator-sum representation:

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger} .
$$

Then the matrix representation of $\mathcal{E}$ is the $d^{2} \times d^{2}$ matrix:

$$
M=\sum_{i} E_{i} \otimes E_{i}^{*}
$$

where $A^{*}$ stands for the conjugate of matrix $A$.

## Lemma

Write $|\Phi\rangle=\sum_{j}|j j\rangle$ for the (unnormalized) maximally entangled state in $\mathcal{H} \otimes \mathcal{H}$, where $\{|j\rangle\}$ is an orthonormal basis of $\mathcal{H}$. Let $M$ be the matrix representation of quantum operaion $\mathcal{E}$. Then for any $d \times d$ matrix $A$ :

$$
(\mathcal{E}(A) \otimes I)|\Phi\rangle=M(A \otimes I)|\Phi\rangle
$$

## Notations

- Let the quantum operation $\mathcal{E}$ in the loop body has the operator-sum representation:

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger} .
$$

Then:

## Notations

- Let the quantum operation $\mathcal{E}$ in the loop body has the operator-sum representation:

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger}
$$

- Let $\mathcal{E}_{i}(i=0,1)$ be the quantum operations defined by the measurement operations $M_{0}, M_{1}$ in the loop guard: $\mathcal{E}_{i}=M_{i} \circ M_{i}^{\dagger}$.

Then:

## Notations

- Let the quantum operation $\mathcal{E}$ in the loop body has the operator-sum representation:

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger}
$$

- Let $\mathcal{E}_{i}(i=0,1)$ be the quantum operations defined by the measurement operations $M_{0}, M_{1}$ in the loop guard: $\mathcal{E}_{i}=M_{i} \circ M_{i}^{\dagger}$.
- Write $\mathcal{G}$ for the composition of $\mathcal{E}$ and $\mathcal{E}_{1}: \mathcal{G}=\mathcal{E} \circ \mathcal{E}_{1}$.

Then:

## Notations

- Let the quantum operation $\mathcal{E}$ in the loop body has the operator-sum representation:

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger} .
$$

- Let $\mathcal{E}_{i}(i=0,1)$ be the quantum operations defined by the measurement operations $M_{0}, M_{1}$ in the loop guard: $\mathcal{E}_{i}=M_{i} \circ M_{i}^{\dagger}$.
- Write $\mathcal{G}$ for the composition of $\mathcal{E}$ and $\mathcal{E}_{1}: \mathcal{G}=\mathcal{E} \circ \mathcal{E}_{1}$.

Then:

- $\mathcal{G}$ has the operator-sum representation:

$$
\mathcal{G}(\rho)=\sum_{i}\left(E_{i} M_{1}\right) \rho\left(M_{1}^{\dagger} E_{i}^{\dagger}\right) .
$$

## Notations

- Let the quantum operation $\mathcal{E}$ in the loop body has the operator-sum representation:

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger} .
$$

- Let $\mathcal{E}_{i}(i=0,1)$ be the quantum operations defined by the measurement operations $M_{0}, M_{1}$ in the loop guard: $\mathcal{E}_{i}=M_{i} \circ M_{i}^{\dagger}$.
- Write $\mathcal{G}$ for the composition of $\mathcal{E}$ and $\mathcal{E}_{1}: \mathcal{G}=\mathcal{E} \circ \mathcal{E}_{1}$.

Then:

- $\mathcal{G}$ has the operator-sum representation:

$$
\mathcal{G}(\rho)=\sum_{i}\left(E_{i} M_{1}\right) \rho\left(M_{1}^{\dagger} E_{i}^{\dagger}\right) .
$$

- The matrix representations of $\mathcal{E}_{0}$ and $\mathcal{G}$ are:

$$
\begin{aligned}
N_{0} & =M_{0} \otimes M_{0}^{*} \\
R & =\sum_{i}\left(E_{i} M_{1}\right) \otimes\left(E_{i} M_{1}\right)^{*} .
\end{aligned}
$$

## Lemma

- Suppose that the Jordan decomposition of $R$ is

$$
R=S J(R) S^{-1}
$$

where $S$ is a nonsingular matrix, and $J(R)$ is the Jordan normal form of $R$ :

$$
J(R)=\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right)=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \cdots, J_{k_{l}}\left(\lambda_{l}\right)\right)
$$

Then:

## Lemma

- Suppose that the Jordan decomposition of $R$ is

$$
R=S J(R) S^{-1}
$$

where $S$ is a nonsingular matrix, and $J(R)$ is the Jordan normal form of $R$ :

$$
J(R)=\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right)=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \cdots, J_{k_{l}}\left(\lambda_{l}\right)\right)
$$

Then:

1. $\left|\lambda_{s}\right| \leq 1$ for all $1 \leq s \leq l$.

## Lemma

- Suppose that the Jordan decomposition of $R$ is

$$
R=S J(R) S^{-1}
$$

where $S$ is a nonsingular matrix, and $J(R)$ is the Jordan normal form of $R$ :

$$
J(R)=\bigoplus_{i=1}^{l} J_{k_{i}}\left(\lambda_{i}\right)=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), J_{k_{2}}\left(\lambda_{2}\right), \cdots, J_{k_{l}}\left(\lambda_{l}\right)\right)
$$

Then:

1. $\left|\lambda_{s}\right| \leq 1$ for all $1 \leq s \leq l$.
2. If $\left|\lambda_{s}\right|=1$ then the sth Jordan block is 1-dimensional; that is, $k_{s}=1$.

## Lemma

1. Quantum loop terminates from input $\rho$ if and only if

$$
R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0}
$$

for some integer $n \geq 0$;

## Lemma

1. Quantum loop terminates from input $\rho$ if and only if

$$
R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0}
$$

for some integer $n \geq 0$;
2. Quantum loop almost surely terminates from input $\rho$ if and only if

$$
\lim _{n \rightarrow \infty} R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0} .
$$

Theorem: Terminating and Almost Sure Terminating

## Lemma

1. Quantum loop terminates from input $\rho$ if and only if

$$
R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0}
$$

for some integer $n \geq 0$;
2. Quantum loop almost surely terminates from input $\rho$ if and only if

$$
\lim _{n \rightarrow \infty} R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0}
$$

## Theorem: Terminating and Almost Sure Terminating

1. If $R^{k}|\Phi\rangle=\mathbf{0}$ for some integer $k \geq 0$, then quantum loop is terminating. Conversely, if loop is terminating, then $R^{k}|\Phi\rangle=\mathbf{0}$ for all integer $k \geq k_{0}$, where $k_{0}$ is the maximal size of Jordan blocks of $R$ corresponding to eigenvalue 0 .

## Lemma

1. Quantum loop terminates from input $\rho$ if and only if

$$
R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0}
$$

for some integer $n \geq 0$;
2. Quantum loop almost surely terminates from input $\rho$ if and only if

$$
\lim _{n \rightarrow \infty} R^{n}(\rho \otimes I)|\Phi\rangle=\mathbf{0} .
$$

## Theorem: Terminating and Almost Sure Terminating

1. If $R^{k}|\Phi\rangle=\mathbf{0}$ for some integer $k \geq 0$, then quantum loop is terminating. Conversely, if loop is terminating, then $R^{k}|\Phi\rangle=\mathbf{0}$ for all integer $k \geq k_{0}$, where $k_{0}$ is the maximal size of Jordan blocks of $R$ corresponding to eigenvalue 0 .
2. Quantum loop is almost surely terminating if and only if $|\Phi\rangle$ is orthogonal to all eigenvectors of $R^{\dagger}$ corresponding to eigenvalues $\lambda$ with $|\lambda|=1$.

## Expectation of Observables at the Outputs

- The expectation $\operatorname{tr}(\operatorname{PF}(\rho))$ of observable $P$ in the output state $\mathcal{F}(\rho)$.


## Expectation of Observables at the Outputs

- The expectation $\operatorname{tr}(P \mathcal{F}(\rho))$ of observable $P$ in the output state $\mathcal{F}(\rho)$.
- Its computation depends on the convergence of power series

$$
\sum_{n} R^{n}
$$

where $R$ is the matrix representation of $\mathcal{G}=\mathcal{E} \circ \mathcal{E}_{1}$.

## Expectation of Observables at the Outputs

- The expectation $\operatorname{tr}(P \mathcal{F}(\rho))$ of observable $P$ in the output state $\mathcal{F}(\rho)$.
- Its computation depends on the convergence of power series

$$
\sum_{n} R^{n}
$$

where $R$ is the matrix representation of $\mathcal{G}=\mathcal{E} \circ \mathcal{E}_{1}$.

- This series may not converge when some eigenvalues of $R$ has module 1.


## Expectation of Observables at the Outputs

- The expectation $\operatorname{tr}(P \mathcal{F}(\rho))$ of observable $P$ in the output state $\mathcal{F}(\rho)$.
- Its computation depends on the convergence of power series

$$
\sum_{n} R^{n}
$$

where $R$ is the matrix representation of $\mathcal{G}=\mathcal{E} \circ \mathcal{E}_{1}$.

- This series may not converge when some eigenvalues of $R$ has module 1.
- Idea to overcome this objection: modify the Jordan normal form $J(R)$ of $R$ by vanishing the Jordan blocks corresponding to those eigenvalues with module 1: $N=S J(N) S^{-1}$

$$
\begin{aligned}
& J(N)=\operatorname{diag}\left(J_{1}^{\prime}, J_{2}^{\prime}, \cdots, J_{3}^{\prime}\right), \\
& J_{s}^{\prime}= \begin{cases}0 & \text { if }\left|\lambda_{s}\right|=1 \\
J_{k_{s}}\left(\lambda_{s}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

## Lemma

For any integer $n \geq 0$ :

$$
N_{0} R^{n}=N_{0} N^{n},
$$

where $N_{0}=M_{0} \otimes M_{0}^{*}$ is the matrix representation of $\mathcal{E}_{0}$.

## Lemma

For any integer $n \geq 0$ :

$$
N_{0} R^{n}=N_{0} N^{n},
$$

where $N_{0}=M_{0} \otimes M_{0}^{*}$ is the matrix representation of $\mathcal{E}_{0}$.

## Theorem

The expectation of observable $P$ in the output state $\mathcal{F}(\rho)$ of quantum loop with input state $\rho$ :

$$
\operatorname{tr}(P \mathcal{F}(\rho))=\langle\Phi|(P \otimes I) N_{0}(I \otimes I-N)^{-1}(\rho \otimes I)|\Phi\rangle .
$$

## Average Running Time

- The average running time loop with input state $\rho$ :

$$
\sum_{n=1}^{\infty} n p_{T}^{(n)}
$$

where for each $n \geq 1$,

$$
p_{T}^{(n)}=\operatorname{tr}\left[\left(\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n-1}\right)(\rho)\right]=\operatorname{tr}\left[\left(\mathcal{E}_{0} \circ \mathcal{G}^{n-1}\right)(\rho)\right]
$$

is the probability that the loop terminates at the $n$th step.

## Average Running Time

- The average running time loop with input state $\rho$ :

$$
\sum_{n=1}^{\infty} n p_{T}^{(n)}
$$

where for each $n \geq 1$,

$$
p_{T}^{(n)}=\operatorname{tr}\left[\left(\mathcal{E}_{0} \circ\left(\mathcal{E} \circ \mathcal{E}_{1}\right)^{n-1}\right)(\rho)\right]=\operatorname{tr}\left[\left(\mathcal{E}_{0} \circ \mathcal{G}^{n-1}\right)(\rho)\right]
$$

is the probability that the loop terminates at the $n$th step.

Theorem
The average running time of quantum loop with input state $\rho$ :

$$
\langle\Phi| N_{0}(I \otimes I-N)^{-2}(\rho \otimes I)|\Phi\rangle .
$$

## Example: Quantum Walk on a Circle

- Let $\mathcal{H}_{d}$ be the direction space - a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.


## Example: Quantum Walk on a Circle

- Let $\mathcal{H}_{d}$ be the direction space - a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
- The $n$ different positions on the $n$-circle are labelled by numbers $0,1, \ldots, n-1$. Let $\mathcal{H}_{p}$ be an $n$-dimensional Hilbert space with orthonormal basis states $|0\rangle,|1\rangle, \ldots,|n-1\rangle$.


## Example: Quantum Walk on a Circle

- Let $\mathcal{H}_{d}$ be the direction space - a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
- The $n$ different positions on the $n$-circle are labelled by numbers $0,1, \ldots, n-1$. Let $\mathcal{H}_{p}$ be an $n$-dimensional Hilbert space with orthonormal basis states $|0\rangle,|1\rangle, \ldots,|n-1\rangle$.
- The state space of the quantum walk: $\mathcal{H}=\mathcal{H}_{d} \otimes \mathcal{H}_{p}$.


## Example: Quantum Walk on a Circle

- Let $\mathcal{H}_{d}$ be the direction space - a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
- The $n$ different positions on the $n$-circle are labelled by numbers $0,1, \ldots, n-1$. Let $\mathcal{H}_{p}$ be an $n$-dimensional Hilbert space with orthonormal basis states $|0\rangle,|1\rangle, \ldots,|n-1\rangle$.
- The state space of the quantum walk: $\mathcal{H}=\mathcal{H}_{d} \otimes \mathcal{H}_{p}$.
- The initial state: $|L\rangle|0\rangle$.


## Example: Quantum Walk on a Circle

- Let $\mathcal{H}_{d}$ be the direction space - a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
- The $n$ different positions on the $n$-circle are labelled by numbers $0,1, \ldots, n-1$. Let $\mathcal{H}_{p}$ be an $n$-dimensional Hilbert space with orthonormal basis states $|0\rangle,|1\rangle, \ldots,|n-1\rangle$.
- The state space of the quantum walk: $\mathcal{H}=\mathcal{H}_{d} \otimes \mathcal{H}_{p}$.
- The initial state: $|L\rangle|0\rangle$.
- This walk has an absorbing boundary at position 1.


## Example: Quantum Walk on a Circle, Continued

Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1 . If the outcome is "yes", then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

$$
M=\left\{M_{y e s}=I_{d} \otimes|1\rangle\langle 1|, M_{n o}=I-M_{y e s}\right\} .
$$

## Example: Quantum Walk on a Circle, Continued

Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1 . If the outcome is "yes", then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

$$
M=\left\{M_{y e s}=I_{d} \otimes|1\rangle\langle 1|, M_{n o}=I-M_{y e s}\right\} .
$$

2. A "coin-tossing" operator

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

is applied in the direction space $\mathcal{H}_{d}$.

## Example: Quantum Walk on a Circle, Continued

Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1 . If the outcome is "yes", then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

$$
M=\left\{M_{y e s}=I_{d} \otimes|1\rangle\langle 1|, M_{n o}=I-M_{y e s}\right\} .
$$

2. A "coin-tossing" operator

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

is applied in the direction space $\mathcal{H}_{d}$.
3. A shift operator

$$
S=\sum_{i=0}^{n-1}|L\rangle\langle L| \otimes|i \ominus 1\rangle\langle i|+\sum_{i=0}^{n-1}|R\rangle\langle R| \otimes|i \oplus 1\rangle\langle i|
$$

is performed in the space $\mathcal{H}$.

Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

$$
\text { while } M[d, p]=\text { yes do } d, p:=W[d, p] \text { od }
$$

where:

## Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

$$
\text { while } M[d, p]=\text { yes do } d, p:=W[d, p] \text { od }
$$

where:

- quantum variables $d, p$ denotes direction and position, respectively;


## Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

$$
\text { while } M[d, p]=\text { yes do } d, p:=W[d, p] \text { od }
$$

where:

- quantum variables $d, p$ denotes direction and position, respectively;
- the single-step walk operator: $W=S\left(H \otimes I_{p}\right)$.


## Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

$$
\text { while } M[d, p]=\text { yes do } d, p:=W[d, p] \text { od }
$$

where:

- quantum variables $d, p$ denotes direction and position, respectively;
- the single-step walk operator: $W=S\left(H \otimes I_{p}\right)$.
- A MATLAB program shows that average running time is $n$ for $n<30$.


## Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

$$
\text { while } M[d, p]=\text { yes do } d, p:=W[d, p] \text { od }
$$

where:

- quantum variables $d, p$ denotes direction and position, respectively;
- the single-step walk operator: $W=S\left(H \otimes I_{p}\right)$.
- A MATLAB program shows that average running time is $n$ for $n<30$.
- Question: The average running time is $n$ for all $n \geq 30$ ?

