## Foundations of Quantum Programming

## Lecture 5: Analysis of Quantum Programs

Mingsheng Ying

University of Technology Sydney, Australia

## Outline

# Analysis of Quantum Loops Quantum while-Loops with Unitary Bodies General Quantum while-Loops

## Outline

# Analysis of Quantum Loops Quantum while-Loops with Unitary Bodies General Quantum while-Loops

## Quantum while-Loops with Unitary Bodies

$$S \equiv \mathbf{while} \, M[\overline{q}] = 1 \, \mathbf{do} \, \overline{q} := U[\overline{q}] \, \mathbf{od}$$

where:

▶  $\bar{q}$  denotes quantum register  $q_1, \ldots, q_n$ , its state Hilbert space:

$$\mathcal{H} = \bigotimes_{i=1}^{n} \mathcal{H}_{q_i}$$

## Quantum while-Loops with Unitary Bodies

$$S \equiv \mathbf{while} \, M[\overline{q}] = 1 \, \mathbf{do} \, \overline{q} := U[\overline{q}] \, \mathbf{od}$$

#### where:

▶  $\bar{q}$  denotes quantum register  $q_1, \dots, q_n$ , its state Hilbert space:

$$\mathcal{H} = \bigotimes_{i=1}^{n} \mathcal{H}_{q_i}$$

• the loop body is unitary transformation  $\bar{q} := U[\bar{q}]$  in  $\mathcal{H}$ ;



## Quantum while-Loops with Unitary Bodies

$$S \equiv \mathbf{while}\, M[\overline{q}] = 1\,\mathbf{do}\, \overline{q} := U[\overline{q}]\,\mathbf{od}$$

#### where:

▶  $\bar{q}$  denotes quantum register  $q_1, \ldots, q_n$ , its state Hilbert space:

$$\mathcal{H} = \bigotimes_{i=1}^{n} \mathcal{H}_{q_i}$$

- the loop body is unitary transformation  $\bar{q} := U[\bar{q}]$  in  $\mathcal{H}$ ;
- ▶ the yes-no measurement  $M = \{M_0, M_1\}$  in the loop guard is projective:  $M_0 = P_{X^{\perp}}$ ,  $M_1 = P_X$  with X being a subspace of  $\mathcal{H}$ ,  $X^{\perp}$  being the orthocomplement of X.

▶ *Initial step*: Performs measurement M on the input state  $\rho$ :

- ▶ *Initial step*: Performs measurement M on the input state  $\rho$ :
  - The loop terminates with probability  $p_T^{(1)}(\rho) = tr(P_{X^\perp}\rho)$ . The output at this step:

$$ho_{out}^{(1)} = rac{P_{X^\perp} 
ho P_{X^\perp}}{p_T^{(1)}(
ho)}.$$

- ▶ *Initial step*: Performs measurement M on the input state  $\rho$ :
  - The loop terminates with probability  $p_T^{(1)}(\rho)=tr(P_{X^\perp}\rho).$  The output at this step:

$$ho_{out}^{(1)} = rac{P_{X^\perp} 
ho P_{X^\perp}}{p_T^{(1)}(
ho)}.$$

The loop continues with probability  $p_{NT}^{(1)}(\rho) = 1 - p_T^{(1)}(\rho) = tr(P_X\rho)$ . The program state after the measurement:

$$\rho_{mid}^{(1)} = \frac{P_X \rho P_X}{p_{NT}^{(1)}(\rho)}.$$

- ▶ *Initial step*: Performs measurement M on the input state  $\rho$ :
  - The loop terminates with probability  $p_T^{(1)}(\rho)=tr(P_{X^\perp}\rho).$  The output at this step:

$$ho_{out}^{(1)} = rac{P_{X^\perp}
ho P_{X^\perp}}{p_T^{(1)}(
ho)}.$$

The loop continues with probability  $p_{NT}^{(1)}(\rho)=1-p_T^{(1)}(\rho)=tr(P_X\rho)$ . The program state after the measurement:

$$\rho_{mid}^{(1)} = \frac{P_X \rho P_X}{p_{NT}^{(1)}(\rho)}.$$

•  $\rho_{mid}^{(1)}$  is fed to the unitary operation *U*:

$$\rho_{in}^{(2)} = U \rho_{mid}^{(1)} U^{\dagger}$$

is returned.  $\rho_{in}^{(2)}$  will be used as the input state in the next step.



▶ *Induction step*: Suppose the loop has run n steps, it did not terminate at the nth step:  $p_{NT}^{(n)} > 0$ . If  $\rho_{in}^{(n+1)}$  is the program state at the end of the nth step, then in the (n+1)th step:

- Induction step: Suppose the loop has run n steps, it did not terminate at the nth step:  $p_{NT}^{(n)} > 0$ . If  $\rho_{in}^{(n+1)}$  is the program state at the end of the nth step, then in the (n+1)th step:
  - The termination probability:  $p_T^{(n+1)}(\rho) = tr(P_{X^{\perp}}\rho_{in}^{(n+1)})$ . The output at this step is

$$\rho_{out}^{(n+1)} = \frac{P_{X^{\perp}} \rho_{in}^{(n+1)} P_{X^{\perp}}}{p_T^{(n+1)}(\rho)}.$$

- Induction step: Suppose the loop has run n steps, it did not terminate at the nth step:  $p_{NT}^{(n)} > 0$ . If  $\rho_{in}^{(n+1)}$  is the program state at the end of the nth step, then in the (n+1)th step:
  - The termination probability:  $p_T^{(n+1)}(\rho) = tr(P_{X^\perp}\rho_{in}^{(n+1)})$ . The output at this step is

$$ho_{out}^{(n+1)} = rac{P_{X^{\perp}} 
ho_{in}^{(n+1)} P_{X^{\perp}}}{p_T^{(n+1)}(
ho)}.$$

 The loop continues to perform the unitary operation *U* on the post-measurement state

$$\rho_{mid}^{(n+1)} = \frac{P_X \rho_{in}^{(n+1)} P_X}{p_{NT}^{(n+1)}(\rho)}$$

with probability  $p_{NT}^{(n+1)}(\rho)=1-p_T^{(n+1)}(\rho)=tr(P_X\rho_{in}^{(n+1)})$ . The state  $\rho_{in}^{(n+2)}=U\rho_{mid}^{(n+1)}U^\dagger$  will be returned. It will be the input of the (n+2)th step.

#### **Termination**

1. If probability  $p_{NT}^{(n)}(\rho) = 0$  for some positive integer n, then the loop terminates from input  $\rho$ .

#### **Termination**

- 1. If probability  $p_{NT}^{(n)}(\rho)=0$  for some positive integer n, then the loop terminates from input  $\rho$ .
- 2. The nontermination probability of the loop from input  $\rho$  is

$$p_{NT}(\rho) = \lim_{n \to \infty} p_{NT}^{(\leq n)}(\rho)$$

where

$$p_{NT}^{(\leq n)}(\rho) = \prod_{i=1}^{n} p_{NT}^{(i)}(\rho)$$

is the probability that the loop does not terminate after n steps.

## **Terminating**

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input  $\rho \in \mathcal{D}(\mathcal{H})$ .



#### **Termination**

- 1. If probability  $p_{NT}^{(n)}(\rho) = 0$  for some positive integer n, then the loop terminates from input  $\rho$ .
- 2. The nontermination probability of the loop from input  $\rho$  is

$$p_{NT}(\rho) = \lim_{n \to \infty} p_{NT}^{(\leq n)}(\rho)$$

where

$$p_{NT}^{(\leq n)}(\rho) = \prod_{i=1}^{n} p_{NT}^{(i)}(\rho)$$

is the probability that the loop does not terminate after n steps.

3. The loop almost surely terminates from input  $\rho$  whenever nontermination probability  $p_{NT}(\rho) = 0$ .

## **Terminating**

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input  $\rho \in \mathcal{D}(\mathcal{H})$ .



▶ The function  $\mathcal{F}: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H})$  computed by the loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_T^{(n)}(\rho) \cdot \rho_{out}^{(n)}$$

for each  $\rho \in \mathcal{D}(\mathcal{H})$ .

▶ The function  $\mathcal{F}: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H})$  computed by the loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_T^{(n)}(\rho) \cdot \rho_{out}^{(n)}$$

for each  $\rho \in \mathcal{D}(\mathcal{H})$ .

► For operator *A* in Hilbert space *H*, subspace *X* of *H*, the restriction of *A* in *X*:

$$A_X = P_X A P_X$$

▶ The function  $\mathcal{F}: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H})$  computed by the loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_T^{(n)}(\rho) \cdot \rho_{out}^{(n)}$$

for each  $\rho \in \mathcal{D}(\mathcal{H})$ .

► For operator *A* in Hilbert space *H*, subspace *X* of *H*, the restriction of *A* in *X*:

$$A_X = P_X A P_X$$

$$p_{NT}^{(\leq n)}(\rho) = tr(U_X^{n-1}\rho_X U_X^{\dagger n-1})$$

▶ The function  $\mathcal{F}: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H})$  computed by the loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_T^{(n)}(\rho) \cdot \rho_{out}^{(n)}$$

for each  $\rho \in \mathcal{D}(\mathcal{H})$ .

► For operator *A* in Hilbert space *H*, subspace *X* of *H*, the restriction of *A* in *X*:

$$A_X = P_X A P_X$$

$$p_{NT}^{(\leq n)}(\rho) = tr(U_X^{n-1}\rho_X U_X^{\dagger n-1})$$

 $\mathcal{F}(\rho) = P_{X^{\perp}} \rho P_{X^{\perp}} + P_{X^{\perp}} U \left( \sum_{n=0}^{\infty} U_X^n \rho_X U_X^{\dagger_n} \right) U^{\dagger} P_{X^{\perp}}$ 

## **Termination Analysis**

Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the loop terminates from input  $\rho$  if and only if it terminates from input  $\rho_i$  for all i.

## **Termination Analysis**

- Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the loop terminates from input  $\rho$  if and only if it terminates from input  $\rho_i$  for all i.
- ► A quantum loop is terminating if and only if it terminates from all pure input states.

$$\sum_{i=1}^{k}|m_{i}\rangle\langle m_{i}|=P_{X},\ \sum_{i=k+1}^{l}|m_{i}\rangle\langle m_{i}|=P_{X^{\perp}}$$

$$\sum_{i=1}^{k}|m_{i}
angle\langle m_{i}|=P_{X},\;\sum_{i=k+1}^{l}|m_{i}
angle\langle m_{i}|=P_{X^{\perp}}$$

• Write  $|\psi\rangle_X$  for (the vector representation of) projection  $P_X|\psi\rangle$ .

$$\sum_{i=1}^{k}|m_{i}
angle\langle m_{i}|=P_{X},\;\sum_{i=k+1}^{l}|m_{i}
angle\langle m_{i}|=P_{X^{\perp}}$$

- Write  $|\psi\rangle_X$  for (the vector representation of) projection  $P_X|\psi\rangle$ .
- ► The following statements are equivalent:

$$\sum_{i=1}^{k}|m_{i}
angle\langle m_{i}|=P_{X},~\sum_{i=k+1}^{l}|m_{i}
angle\langle m_{i}|=P_{X^{\perp}}$$

- Write  $|\psi\rangle_X$  for (the vector representation of) projection  $P_X|\psi\rangle$ .
- ► The following statements are equivalent:
  - 1. The loop terminates from input  $\rho \in \mathcal{D}(\mathcal{H})$ ;

$$\sum_{i=1}^{k}|m_{i}\rangle\langle m_{i}|=P_{\mathrm{X}},\ \sum_{i=k+1}^{l}|m_{i}\rangle\langle m_{i}|=P_{\mathrm{X}^{\perp}}$$

- Write  $|\psi\rangle_X$  for (the vector representation of) projection  $P_X|\psi\rangle$ .
- ► The following statements are equivalent:
  - 1. The loop terminates from input  $\rho \in \mathcal{D}(\mathcal{H})$ ;
  - 2.  $U_X^n \rho_X U_X^{\dagger n} = \mathbf{0}_{k \times k}$  for some nonnegative integer n, where  $\mathbf{0}_{k \times k}$  is the  $(k \times k)$ -zero matrix.

$$\sum_{i=1}^k |m_i\rangle\langle m_i| = P_X, \ \sum_{i=k+1}^l |m_i\rangle\langle m_i| = P_{X^\perp}$$

- Write  $|\psi\rangle_X$  for (the vector representation of) projection  $P_X|\psi\rangle$ .
- ► The following statements are equivalent:
  - 1. The loop terminates from input  $\rho \in \mathcal{D}(\mathcal{H})$ ;
  - 2.  $U_X^n \rho_X U_X^{\dagger n} = \mathbf{0}_{k \times k}$  for some nonnegative integer n, where  $\mathbf{0}_{k \times k}$  is the  $(k \times k)$ -zero matrix.
- ► The loop terminates from pure input state  $|\psi\rangle$  if and only if  $U_X^n|\psi\rangle_X = \mathbf{0}$  for some nonnegative integer n, where  $\mathbf{0}$  is the k-dimensional zero vector.

► The condition  $U_X^n | \psi \rangle_X = \mathbf{0}$  is a termination condition for the loop:

while 
$$\mathbf{v} \neq \mathbf{0}$$
 do  $\mathbf{v} := U_X \mathbf{v}$  od

This loop must be understood as a classical computation in the field of complex numbers.

► The condition  $U_X^n | \psi \rangle_X = \mathbf{0}$  is a termination condition for the loop:

while 
$$\mathbf{v} \neq \mathbf{0}$$
 do  $\mathbf{v} := U_X \mathbf{v}$  od

This loop must be understood as a classical computation in the field of complex numbers.

Let *S* be a nonsingular  $(k \times k)$ -complex matrix. The following statements are equivalent:

► The condition  $U_X^n | \psi \rangle_X = \mathbf{0}$  is a termination condition for the loop:

while 
$$\mathbf{v} \neq \mathbf{0}$$
 do  $\mathbf{v} := U_X \mathbf{v}$  od

This loop must be understood as a classical computation in the field of complex numbers.

- Let *S* be a nonsingular  $(k \times k)$ -complex matrix. The following statements are equivalent:
  - 1. The above classical loop (with  $\mathbf{v} \in \mathbf{C}^k$ ) terminates from input  $\mathbf{v}_0 \in \mathbf{C}^k$ .

► The condition  $U_X^n | \psi \rangle_X = \mathbf{0}$  is a termination condition for the loop:

while 
$$\mathbf{v} \neq \mathbf{0}$$
 do  $\mathbf{v} := U_X \mathbf{v}$  od

This loop must be understood as a classical computation in the field of complex numbers.

- Let *S* be a nonsingular  $(k \times k)$ -complex matrix. The following statements are equivalent:
  - 1. The above classical loop (with  $\mathbf{v} \in \mathbf{C}^k$ ) terminates from input  $\mathbf{v}_0 \in \mathbf{C}^k$ .
  - 2. The classical loop:

while 
$$\mathbf{v} \neq \mathbf{0}$$
 do  $\mathbf{v} := (SU_XS^{-1})\mathbf{v}$  od

(with  $\mathbf{v} \in \mathbf{C}^k$ ) terminates from input  $S\mathbf{v}_0$ .

#### Jordan Normal Form Theorem

For any  $(k \times k)$ -complex matrix A, there is a nonsingular  $(k \times k)$ -complex matrix S such that

$$A = SJ(A)S^{-1}$$

where

$$J(A) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i)$$

$$= diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l))$$

$$= \begin{pmatrix} J_{k_1}(\lambda_1) & & & \\ & J_{k_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{k_l}(\lambda_l) \end{pmatrix}$$

is the Jordan normal form of A,

## Jordan Normal Form Theorem (Continued)

is a  $(k_i \times k_i)$ -Jordan block for each  $1 \le i \le l$ .

#### **Technical Lemma**

Let  $J_r(\lambda)$  be a  $(r \times r)$ -Jordan block, **v** an r-dimensional complex vector. Then

$$J_r(\lambda)^n \mathbf{v} = \mathbf{0}$$

for some nonnegative integer n if and only if  $\lambda = 0$  or  $\mathbf{v} = \mathbf{0}$ .



#### Theorem

► The Jordan decomposition of  $U_X$ :  $U_X = SJ(U_X)S^{-1}$ , where

$$J(U_X) = \bigoplus_{i=1}^l J_{k_i}(\lambda_i) = diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)).$$

### Theorem

▶ The Jordan decomposition of  $U_X$ :  $U_X = SJ(U_X)S^{-1}$ , where

$$J(U_X) = \bigoplus_{i=1}^l J_{k_i}(\lambda_i) = diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)).$$

Let  $S^{-1}|\psi\rangle_X$  be divided into l sub-vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_l$  such that the length of  $\mathbf{v}_i$  is  $k_i$ .

## Corollary

The quantum loop is terminating if and only if  $U_X$  has only zero eigenvalues.



### Theorem

▶ The Jordan decomposition of  $U_X$ :  $U_X = SJ(U_X)S^{-1}$ , where

$$J(U_X) = \bigoplus_{i=1}^l J_{k_i}(\lambda_i) = diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)).$$

- Let  $S^{-1}|\psi\rangle_X$  be divided into l sub-vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_l$  such that the length of  $\mathbf{v}_i$  is  $k_i$ .
- ► Then: the quantum loop terminates from input  $|\psi\rangle$  if and only if for each  $1 \le i \le l$ ,  $\lambda_i = 0$  or  $\mathbf{v}_i = \mathbf{0}$ .

# Corollary

The quantum loop is terminating if and only if  $U_X$  has only zero eigenvalues.

Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the quantum loop almost surely terminates from input  $\rho$  if and only if it almost surely terminates from input  $\rho_i$  for all i.

- ▶ Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the quantum loop almost surely terminates from input  $\rho$  if and only if it almost surely terminates from input  $\rho_i$  for all i.
- ► A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.

- ▶ Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the quantum loop almost surely terminates from input  $\rho$  if and only if it almost surely terminates from input  $\rho_i$  for all i.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
- The quantum loop almost surely terminates from pure input state  $|\psi\rangle$  if and only if

$$\lim_{n\to\infty}||U_X^n|\psi\rangle||=0.$$

- ▶ Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the quantum loop almost surely terminates from input  $\rho$  if and only if it almost surely terminates from input  $\rho_i$  for all i.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
- The quantum loop almost surely terminates from pure input state  $|\psi\rangle$  if and only if

$$\lim_{n\to\infty}||U_X^n|\psi\rangle||=0.$$

► The quantum loop almost surely terminates from input  $|\psi\rangle$  if and only if for each  $1 \le i \le l$ ,  $|\lambda_i| < 1$  or  $\mathbf{v}_i = \mathbf{0}$ .

- ▶ Let  $\rho = \sum_i p_i \rho_i$  with  $p_i > 0$  for all i. Then the quantum loop almost surely terminates from input  $\rho$  if and only if it almost surely terminates from input  $\rho_i$  for all i.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
- The quantum loop almost surely terminates from pure input state  $|\psi\rangle$  if and only if

$$\lim_{n\to\infty}||U_X^n|\psi\rangle||=0.$$

- ► The quantum loop almost surely terminates from input  $|\psi\rangle$  if and only if for each  $1 \le i \le l$ ,  $|\lambda_i| < 1$  or  $\mathbf{v}_i = \mathbf{0}$ .
- ▶ The quantum loop is almost surely terminating if and only if all the eigenvalues of  $U_X$  have norms less than 1.

# General Quantum while-Loops

while 
$$M[\overline{q}] = 1$$
 do  $S$  od

### where:

•  $M = \{M_0, M_1\}$  is a yes-no measurement;

while 
$$M[\overline{q}] = 1$$
 do  $\overline{q} := \mathcal{E}[\overline{q}]$  od.

# General Quantum while-Loops

while 
$$M[\overline{q}] = 1$$
 do  $S$  od

#### where:

- $M = \{M_0, M_1\}$  is a yes-no measurement;
- $\bar{q}$  is a quantum register;

while 
$$M[\overline{q}] = 1$$
 do  $\overline{q} := \mathcal{E}[\overline{q}]$  od.

### Notation

For i = 0, 1, define quantum operation  $\mathcal{E}_i$ :

$$\mathcal{E}_i(\sigma) = M_i \sigma M_i^{\dagger}$$

# General Quantum while-Loops

while 
$$M[\overline{q}] = 1$$
 do  $S$  od

#### where:

- $M = \{M_0, M_1\}$  is a yes-no measurement;
- $\bar{q}$  is a quantum register;
- ▶ the loop body *S* is a general quantum program.

while 
$$M[\overline{q}] = 1$$
 do  $\overline{q} := \mathcal{E}[\overline{q}]$  od.

### **Notation**

For i = 0, 1, define quantum operation  $\mathcal{E}_i$ :

$$\mathcal{E}_i(\sigma) = M_i \sigma M_i^{\dagger}$$

# **Execution of Loops**

*Initial step*: Perform the termination measurement  $\{M_0, M_1\}$  on the input state  $\rho$ .

► The probability that the program terminates (the measurement outcome is 0):

$$p_T^{(1)}(\rho) = tr[\mathcal{E}_0(\rho)].$$

The program state after termination:

$$\rho_{out}^{(1)} = \mathcal{E}_0(\rho)/p_T^{(1)}(\rho).$$

Encode probability  $p_T^{(1)}(\rho)$  and density operator  $\rho_{out}^{(1)}$  into a partial density operator

$$p_T^{(1)}(\rho)\rho_{out}^{(1)} = \mathcal{E}_0(\rho).$$

So,  $\mathcal{E}_0(\rho)$  is the partial output state at the first step.



► The probability that the program does not terminate (the measurement outcome is 1):

$$p_{NT}^{(1)}(\rho) = tr[\mathcal{E}_1(\rho)]$$

The program state after the outcome 1 is obtained:

$$\rho_{mid}^{(1)} = \mathcal{E}_1(\rho) / p_{NT}^{(1)}(\rho).$$

It is transformed by the loop body  $\mathcal E$  to

$$\rho_{in}^{(2)} = (\mathcal{E} \circ \mathcal{E}_1)(\rho)/p_{NT}^{(1)}(\rho),$$

upon which the second step will be executed.

Combine  $p_{NT}^{(1)}$  and  $\rho_{in}^{(2)}$  into a partial density operator

$$p_{NT}^{(1)}(\rho)\rho_{in}^{(2)}=(\mathcal{E}\circ\mathcal{E}_1)(\rho).$$

*Induction step*: Write  $p_{NT}^{(\leq n)} = \prod_{i=1}^n p_{NT}^{(i)}$  for the probability that the program does not terminate within n steps, where  $p_{NT}^{(i)}$  is the probability that the program does not terminate at the ith step for every  $1 \leq i \leq n$ .

The program state after the *n*th measurement with outcome 1:

$$\rho_{mid}^{(n)} = \frac{\left[\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^{n-1}\right](\rho)}{p_{NT}^{(\leq n)}}$$

It is transformed by the loop body  $\mathcal E$  into

$$\rho_{in}^{(n+1)} = \frac{(\mathcal{E} \circ \mathcal{E}_1)^n(\rho)}{p_{NT}^{(\leq n)}}.$$

Combine  $p_{NT}^{(\leq n)}$  and  $\rho_{in}^{(n+1)}$  into a partial density operator

$$p_{NT}^{(\leq n)}(\rho)\rho_{in}^{(n+1)} = (\mathcal{E} \circ \mathcal{E}_1)^n(\rho).$$

► The (n+1)st step is executed upon  $\rho_{in}^{(n+1)}$ .

- ▶ The (n+1)st step is executed upon  $\rho_{in}^{(n+1)}$ .
  - ► The probability that the program terminates at the (n + 1)st step:

$$p_T^{(n+1)}(\rho) = tr \left[ \mathcal{E}_0 \left( \rho_{in}^{(n+1)} \right) \right].$$

- ► The (n+1)st step is executed upon  $\rho_{in}^{(n+1)}$ .
  - ▶ The probability that the program terminates at the (n + 1)st step:

$$p_T^{(n+1)}(\rho) = tr \left[ \mathcal{E}_0 \left( \rho_{in}^{(n+1)} \right) \right].$$

From The probability that the program does not terminate within n steps but it terminates at the (n + 1)st step:

$$q_T^{(n+1)}(\rho) = tr\left(\left[\mathcal{E}_0 \circ \left(\mathcal{E} \circ \mathcal{E}_1\right)^n\right](\rho)\right).$$

- ► The (n+1)st step is executed upon  $\rho_{in}^{(n+1)}$ .
  - ▶ The probability that the program terminates at the (n + 1)st step:

$$p_T^{(n+1)}(\rho) = tr \left[ \mathcal{E}_0 \left( \rho_{in}^{(n+1)} \right) \right].$$

The probability that the program does not terminate within n steps but it terminates at the (n + 1)st step:

$$q_T^{(n+1)}(\rho) = tr([\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)).$$

The program state after the termination:

$$\rho_{out}^{(n+1)} = [\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)/q_T^{(n+1)}(\rho).$$

- ► The (n+1)st step is executed upon  $\rho_{in}^{(n+1)}$ .
  - ▶ The probability that the program terminates at the (n + 1)st step:

$$p_T^{(n+1)}(\rho) = tr \left[ \mathcal{E}_0 \left( \rho_{in}^{(n+1)} \right) \right].$$

The probability that the program does not terminate within n steps but it terminates at the (n + 1)st step:

$$q_T^{(n+1)}(\rho) = tr\left(\left[\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n\right](\rho)\right).$$

The program state after the termination:

$$\rho_{out}^{(n+1)} = [\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho) / q_T^{(n+1)}(\rho).$$

• Combining  $q_T^{(n+1)}(\rho)$  and  $\rho_{out}^{(n+1)}$  yields the partial output state of the program at the (n+1)st step:

$$q_T^{(n+1)}(\rho)\rho_{out}^{(n+1)} = [\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho).$$



► The probability that the program does not terminate within (n+1) steps:

$$p_{NT}^{(\leq n+1)}(\rho) = tr([\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)).$$

The probability that the program does not terminate within (n+1) steps:

$$p_{NT}^{(\leq n+1)}(\rho) = tr([\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)).$$

### **Termination**

1. The quantum loop terminates from input state  $\rho$  if probability  $p_{NT}^{(n)}(\rho)=0$  for some positive integer n.

► The probability that the program does not terminate within (n + 1) steps:

$$p_{NT}^{(\leq n+1)}(\rho) = tr([\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)).$$

#### **Termination**

- 1. The quantum loop terminates from input state  $\rho$  if probability  $p_{NT}^{(n)}(\rho) = 0$  for some positive integer n.
- 2. The loop almost surely terminates from input state  $\rho$  if nontermination probability

$$p_{NT}(\rho) = \lim_{n \to \infty} p_{NT}^{(\leq n)}(\rho) = 0$$

where  $p_{NT}^{(\leq n)}$  is the probability that the program does not terminate within n steps.



# **Terminating**

The quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from any input  $\rho$ .

## **Terminating**

The quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from any input  $\rho$ .

## **Computed Function**

The function  $\mathcal{F}: \mathcal{D}(H) \to \mathcal{D}(H)$  computed by the quantum loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} q_T^{(n)}(\rho) \rho_{out}^{(n)} = \sum_{n=0}^{\infty} \left[ \mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n \right] (\rho)$$

for each  $\rho \in \mathcal{D}(\mathcal{H})$ , where

$$q_T^{(n)} = p_{NT}^{(\leq n-1)} p_T^{(n)}$$

is the probability that the program does not terminate within n-1 steps but it terminate at the nth step.

## Recursive Characterisation of Computed Function

The quantum operation  ${\mathcal F}$  computed by a loop satisfies the recursive equation:

$$\mathcal{F}(\rho) = \mathcal{E}_0(\rho) + \mathcal{F}[(\mathcal{E} \circ \mathcal{E}_1)(\rho)].$$

## Recursive Characterisation of Computed Function

The quantum operation  $\mathcal{F}$  computed by a loop satisfies the recursive equation:

$$\mathcal{F}(\rho) = \mathcal{E}_0(\rho) + \mathcal{F}[(\mathcal{E} \circ \mathcal{E}_1)(\rho)].$$

## Matrix Representation of Quantum Operations

Suppose quantum operation  $\mathcal{E}$  in a d-dimensional Hilbert space  $\mathcal{H}$  has the Kraus operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}.$$

Then the matrix representation of  $\mathcal{E}$  is the  $d^2 \times d^2$  matrix:

$$M=\sum_i E_i\otimes E_i^*,$$

where  $A^*$  stands for the conjugate of matrix A.

Write  $|\Phi\rangle = \sum_j |jj\rangle$  for the (unnormalized) maximally entangled state in  $\mathcal{H} \otimes \mathcal{H}$ , where  $\{|j\rangle\}$  is an orthonormal basis of  $\mathcal{H}$ . Let M be the matrix representation of quantum operation  $\mathcal{E}$ . Then for any  $d \times d$  matrix A:

$$(\mathcal{E}(A)\otimes I)|\Phi\rangle=M(A\otimes I)|\Phi\rangle.$$



Let the quantum operation  $\mathcal E$  in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}.$$

Let the quantum operation  $\mathcal{E}$  in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}.$$

▶ Let  $\mathcal{E}_i$  (i = 0, 1) be the quantum operations defined by the measurement operations  $M_0, M_1$  in the loop guard:  $\mathcal{E}_i = M_i \circ M_i^{\dagger}$ .

Let the quantum operation  $\mathcal{E}$  in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}.$$

- ▶ Let  $\mathcal{E}_i$  (i = 0, 1) be the quantum operations defined by the measurement operations  $M_0, M_1$  in the loop guard:  $\mathcal{E}_i = M_i \circ M_i^{\dagger}$ .
- Write  $\mathcal{G}$  for the composition of  $\mathcal{E}$  and  $\mathcal{E}_1$ :  $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$ .

Let the quantum operation  $\mathcal{E}$  in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}.$$

- ▶ Let  $\mathcal{E}_i$  (i = 0, 1) be the quantum operations defined by the measurement operations  $M_0, M_1$  in the loop guard:  $\mathcal{E}_i = M_i \circ M_i^{\dagger}$ .
- ▶ Write  $\mathcal{G}$  for the composition of  $\mathcal{E}$  and  $\mathcal{E}_1$ :  $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$ .

### Then:

▶ *G* has the operator-sum representation:

$$\mathcal{G}(\rho) = \sum_{i} (E_{i}M_{1})\rho(M_{1}^{\dagger}E_{i}^{\dagger}).$$

Let the quantum operation  $\mathcal{E}$  in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}.$$

- ▶ Let  $\mathcal{E}_i$  (i = 0, 1) be the quantum operations defined by the measurement operations  $M_0, M_1$  in the loop guard:  $\mathcal{E}_i = M_i \circ M_i^{\dagger}$ .
- ▶ Write  $\mathcal{G}$  for the composition of  $\mathcal{E}$  and  $\mathcal{E}_1$ :  $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$ .

#### Then:

 $\triangleright$  *G* has the operator-sum representation:

$$\mathcal{G}(\rho) = \sum_{i} (E_i M_1) \rho(M_1^{\dagger} E_i^{\dagger}).$$

▶ The matrix representations of  $\mathcal{E}_0$  and  $\mathcal{G}$  are:

$$N_0 = M_0 \otimes M_0^*,$$
  

$$R = \sum_i (E_i M_1) \otimes (E_i M_1)^*.$$



► Suppose that the Jordan decomposition of *R* is

$$R = SJ(R)S^{-1}$$

where *S* is a nonsingular matrix, and J(R) is the Jordan normal form of *R*:

$$J(R) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \cdots, J_{k_l}(\lambda_l)).$$

▶ Suppose that the Jordan decomposition of *R* is

$$R = SJ(R)S^{-1}$$

where *S* is a nonsingular matrix, and J(R) is the Jordan normal form of *R*:

$$J(R) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)).$$

#### Then:

1.  $|\lambda_s| \leq 1$  for all  $1 \leq s \leq l$ .

► Suppose that the Jordan decomposition of *R* is

$$R = SJ(R)S^{-1}$$

where *S* is a nonsingular matrix, and J(R) is the Jordan normal form of *R*:

$$J(R) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = diag(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \cdots, J_{k_l}(\lambda_l)).$$

- 1.  $|\lambda_s| \leq 1$  for all  $1 \leq s \leq l$ .
- 2. If  $|\lambda_s| = 1$  then the *s*th Jordan block is 1-dimensional; that is,  $k_s = 1$ .

1. Quantum loop terminates from input  $\rho$  if and only if

$$R^n(\rho \otimes I)|\Phi\rangle = \mathbf{0}$$

for some integer  $n \ge 0$ ;

1. Quantum loop terminates from input  $\rho$  if and only if

$$R^n(\rho\otimes I)|\Phi\rangle=\mathbf{0}$$

for some integer  $n \ge 0$ ;

2. Quantum loop almost surely terminates from input  $\rho$  if and only if

$$\lim_{n\to\infty}R^n(\rho\otimes I)|\Phi\rangle=\mathbf{0}.$$

Theorem: Terminating and Almost Sure Terminating

#### Lemma

1. Quantum loop terminates from input  $\rho$  if and only if

$$R^n(\rho\otimes I)|\Phi\rangle=\mathbf{0}$$

for some integer  $n \ge 0$ ;

2. Quantum loop almost surely terminates from input  $\rho$  if and only if

$$\lim_{n\to\infty}R^n(\rho\otimes I)|\Phi\rangle=\mathbf{0}.$$

## Theorem: Terminating and Almost Sure Terminating

1. If  $R^k|\Phi\rangle = \mathbf{0}$  for some integer  $k \geq 0$ , then quantum loop is terminating. Conversely, if loop is terminating, then  $R^k|\Phi\rangle = \mathbf{0}$  for all integer  $k \geq k_0$ , where  $k_0$  is the maximal size of Jordan blocks of R corresponding to eigenvalue 0.

#### Lemma

1. Quantum loop terminates from input  $\rho$  if and only if

$$R^n(\rho \otimes I)|\Phi\rangle = \mathbf{0}$$

for some integer  $n \ge 0$ ;

2. Quantum loop almost surely terminates from input  $\rho$  if and only if

$$\lim_{n\to\infty}R^n(\rho\otimes I)|\Phi\rangle=\mathbf{0}.$$

## Theorem: Terminating and Almost Sure Terminating

- 1. If  $R^k|\Phi\rangle = \mathbf{0}$  for some integer  $k \geq 0$ , then quantum loop is terminating. Conversely, if loop is terminating, then  $R^k|\Phi\rangle = \mathbf{0}$  for all integer  $k \geq k_0$ , where  $k_0$  is the maximal size of Jordan blocks of R corresponding to eigenvalue 0.
- 2. Quantum loop is almost surely terminating if and only if  $|\Phi\rangle$  is orthogonal to all eigenvectors of  $R^{\dagger}$  corresponding to eigenvalues  $\lambda$  with  $|\lambda|=1$ .



► The expectation  $tr(P\mathcal{F}(\rho))$  of observable P in the output state  $\mathcal{F}(\rho)$ .

- ► The expectation  $tr(P\mathcal{F}(\rho))$  of observable P in the output state  $\mathcal{F}(\rho)$ .
- ► Its computation depends on the convergence of power series

$$\sum_{n} R^{n}$$

where *R* is the matrix representation of  $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$ .

- ► The expectation  $tr(P\mathcal{F}(\rho))$  of observable P in the output state  $\mathcal{F}(\rho)$ .
- Its computation depends on the convergence of power series

$$\sum_{n} R^{n}$$

where *R* is the matrix representation of  $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$ .

► This series may not converge when some eigenvalues of *R* has module 1.

- ► The expectation  $tr(P\mathcal{F}(\rho))$  of observable P in the output state  $\mathcal{F}(\rho)$ .
- ▶ Its computation depends on the convergence of power series

$$\sum_{n} R^{n}$$

where *R* is the matrix representation of  $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$ .

- ► This series may not converge when some eigenvalues of *R* has module 1.
- ▶ *Idea to overcome this objection*: modify the Jordan normal form J(R) of R by vanishing the Jordan blocks corresponding to those eigenvalues with module 1:  $N = SJ(N)S^{-1}$

$$J(N) = diag(J'_1, J'_2, \dots, J'_3),$$

$$J'_s = \begin{cases} 0 & \text{if } |\lambda_s| = 1, \\ J_{k_s}(\lambda_s) & \text{otherwise.} \end{cases}$$

#### Lemma

For any integer  $n \ge 0$ :

$$N_0R^n=N_0N^n,$$

where  $N_0 = M_0 \otimes M_0^*$  is the matrix representation of  $\mathcal{E}_0$ .

#### Lemma

For any integer  $n \ge 0$ :

$$N_0R^n=N_0N^n,$$

where  $N_0 = M_0 \otimes M_0^*$  is the matrix representation of  $\mathcal{E}_0$ .

#### Theorem

The expectation of observable P in the output state  $\mathcal{F}(\rho)$  of quantum loop with input state  $\rho$ :

$$tr(P\mathcal{F}(\rho)) = \langle \Phi | (P \otimes I) N_0 (I \otimes I - N)^{-1} (\rho \otimes I) | \Phi \rangle.$$



### Average Running Time

▶ The average running time loop with input state  $\rho$ :

$$\sum_{n=1}^{\infty} n p_T^{(n)}$$

where for each  $n \ge 1$ ,

$$p_{T}^{(n)} = tr\left[\left(\mathcal{E}_{0} \circ (\mathcal{E} \circ \mathcal{E}_{1})^{n-1}\right)(\rho)\right] = tr\left[\left(\mathcal{E}_{0} \circ \mathcal{G}^{n-1}\right)(\rho)\right]$$

is the probability that the loop terminates at the *n*th step.

### Average Running Time

▶ The average running time loop with input state  $\rho$ :

$$\sum_{n=1}^{\infty} n p_T^{(n)}$$

where for each  $n \ge 1$ ,

$$p_{T}^{(n)} = tr\left[\left(\mathcal{E}_{0} \circ (\mathcal{E} \circ \mathcal{E}_{1})^{n-1}\right)(\rho)\right] = tr\left[\left(\mathcal{E}_{0} \circ \mathcal{G}^{n-1}\right)(\rho)\right]$$

is the probability that the loop terminates at the *n*th step.

#### **Theorem**

The average running time of quantum loop with input state  $\rho$ :

$$\langle \Phi | N_0 (I \otimes I - N)^{-2} (\rho \otimes I) | \Phi \rangle$$
.

▶ Let  $\mathcal{H}_d$  be the direction space — a 2-dimensional Hilbert space with orthonormal basis state  $|L\rangle$  and  $|R\rangle$ , indicating directions Left and Right.

- ▶ Let  $\mathcal{H}_d$  be the direction space a 2-dimensional Hilbert space with orthonormal basis state  $|L\rangle$  and  $|R\rangle$ , indicating directions Left and Right.
- ► The n different positions on the n-circle are labelled by numbers 0, 1, ..., n-1. Let  $\mathcal{H}_p$  be an n-dimensional Hilbert space with orthonormal basis states  $|0\rangle, |1\rangle, ..., |n-1\rangle$ .

- ▶ Let  $\mathcal{H}_d$  be the direction space a 2-dimensional Hilbert space with orthonormal basis state  $|L\rangle$  and  $|R\rangle$ , indicating directions Left and Right.
- ► The *n* different positions on the *n*-circle are labelled by numbers 0, 1, ..., n-1. Let  $\mathcal{H}_p$  be an *n*-dimensional Hilbert space with orthonormal basis states  $|0\rangle, |1\rangle, ..., |n-1\rangle$ .
- ▶ The state space of the quantum walk:  $\mathcal{H} = \mathcal{H}_d \otimes \mathcal{H}_v$ .

- ▶ Let  $\mathcal{H}_d$  be the direction space a 2-dimensional Hilbert space with orthonormal basis state  $|L\rangle$  and  $|R\rangle$ , indicating directions Left and Right.
- ► The *n* different positions on the *n*-circle are labelled by numbers 0, 1, ..., n-1. Let  $\mathcal{H}_p$  be an *n*-dimensional Hilbert space with orthonormal basis states  $|0\rangle, |1\rangle, ..., |n-1\rangle$ .
- ▶ The state space of the quantum walk:  $\mathcal{H} = \mathcal{H}_d \otimes \mathcal{H}_p$ .
- ▶ The initial state:  $|L\rangle|0\rangle$ .

- ▶ Let  $\mathcal{H}_d$  be the direction space a 2-dimensional Hilbert space with orthonormal basis state  $|L\rangle$  and  $|R\rangle$ , indicating directions Left and Right.
- ► The *n* different positions on the *n*-circle are labelled by numbers 0, 1, ..., n-1. Let  $\mathcal{H}_p$  be an *n*-dimensional Hilbert space with orthonormal basis states  $|0\rangle, |1\rangle, ..., |n-1\rangle$ .
- ▶ The state space of the quantum walk:  $\mathcal{H} = \mathcal{H}_d \otimes \mathcal{H}_v$ .
- ▶ The initial state:  $|L\rangle|0\rangle$ .
- ► This walk has an absorbing boundary at position 1.

Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1. If the outcome is "yes", then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

$$M = \{M_{yes} = I_d \otimes |1\rangle\langle 1|, M_{no} = I - M_{yes}\}.$$

Eeach step of the walk consists of:

 Measure the position of the system to see whether the current position is 1. If the outcome is "yes", then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

$$M = \{M_{yes} = I_d \otimes |1\rangle\langle 1|, M_{no} = I - M_{yes}\}.$$

2. A "coin-tossing" operator

$$H = \frac{1}{\sqrt{2}} \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

is applied in the direction space  $\mathcal{H}_d$ .

Eeach step of the walk consists of:

 Measure the position of the system to see whether the current position is 1. If the outcome is "yes", then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

$$M = \{M_{yes} = I_d \otimes |1\rangle\langle 1|, M_{no} = I - M_{yes}\}.$$

2. A "coin-tossing" operator

$$H = \frac{1}{\sqrt{2}} \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

is applied in the direction space  $\mathcal{H}_d$ .

3. A shift operator

$$S = \sum_{i=0}^{n-1} |L\rangle\langle L| \otimes |i \ominus 1\rangle\langle i| + \sum_{i=0}^{n-1} |R\rangle\langle R| \otimes |i \oplus 1\rangle\langle i|$$

is performed in the space  $\mathcal{H}$ .



Quantum while-loop:

while 
$$M[d, p] = yes \operatorname{do} d, p := W[d, p] \operatorname{od}$$

Quantum while-loop:

while 
$$M[d, p] = yes \operatorname{do} d, p := W[d, p] \operatorname{od}$$

#### where:

quantum variables d, p denotes direction and position, respectively;

Quantum while-loop:

while 
$$M[d, p] = yes \operatorname{do} d, p := W[d, p] \operatorname{od}$$

- quantum variables d, p denotes direction and position, respectively;
- ▶ the single-step walk operator:  $W = S(H \otimes I_p)$ .

Quantum while-loop:

while 
$$M[d, p] = yes \operatorname{do} d, p := W[d, p] \operatorname{od}$$

- quantum variables d, p denotes direction and position, respectively;
- ▶ the single-step walk operator:  $W = S(H \otimes I_p)$ .
- ► A MATLAB program shows that *average running time* is *n* for *n* < 30.

Quantum while-loop:

while 
$$M[d, p] = yes \operatorname{do} d, p := W[d, p] \operatorname{od}$$

- quantum variables d, p denotes direction and position, respectively;
- ▶ the single-step walk operator:  $W = S(H \otimes I_p)$ .
- A MATLAB program shows that average running time is n for n < 30.</li>
- *Question*: The average running time is n for all  $n \ge 30$ ?