
Foundations of Quantum Programming

Lecture 5: Analysis of Quantum Programs

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Analysis of Quantum Loops
Quantum while-Loops with Unitary Bodies
General Quantum while-Loops

Outline

Analysis of Quantum Loops
Quantum while-Loops with Unitary Bodies
General Quantum while-Loops

Quantum while-Loops with Unitary Bodies

S ≡ while M[q] = 1 do q := U[q] od

where:
I q denotes quantum register q1, . . . , qn, its state Hilbert space:

H =
n⊗

i=1

Hqi

I the loop body is unitary transformation q := U[q] inH;
I the yes-no measurement M = {M0, M1} in the loop guard is

projective: M0 = PX⊥ , M1 = PX with X being a subspace ofH,
X⊥ being the orthocomplement of X.

Quantum while-Loops with Unitary Bodies

S ≡ while M[q] = 1 do q := U[q] od

where:
I q denotes quantum register q1, . . . , qn, its state Hilbert space:

H =
n⊗

i=1

Hqi

I the loop body is unitary transformation q := U[q] inH;

I the yes-no measurement M = {M0, M1} in the loop guard is
projective: M0 = PX⊥ , M1 = PX with X being a subspace ofH,
X⊥ being the orthocomplement of X.

Quantum while-Loops with Unitary Bodies

S ≡ while M[q] = 1 do q := U[q] od

where:
I q denotes quantum register q1, . . . , qn, its state Hilbert space:

H =
n⊗

i=1

Hqi

I the loop body is unitary transformation q := U[q] inH;
I the yes-no measurement M = {M0, M1} in the loop guard is

projective: M0 = PX⊥ , M1 = PX with X being a subspace ofH,
X⊥ being the orthocomplement of X.

Execution of Quantum Loops
I Initial step: Performs measurement M on the input state ρ:

I The loop terminates with probability p(1)T (ρ) = tr(PX⊥ρ). The
output at this step:

ρ
(1)
out =

PX⊥ρPX⊥

p(1)T (ρ)
.

I The loop continues with probability

p(1)NT(ρ) = 1− p(1)T (ρ) = tr(PXρ). The program state after the
measurement:

ρ
(1)
mid =

PXρPX

p(1)NT(ρ)
.

I ρ
(1)
mid is fed to the unitary operation U:

ρ
(2)
in = Uρ

(1)
midU†

is returned. ρ
(2)
in will be used as the input state in the next step.

Execution of Quantum Loops
I Initial step: Performs measurement M on the input state ρ:

I The loop terminates with probability p(1)T (ρ) = tr(PX⊥ρ). The
output at this step:

ρ
(1)
out =

PX⊥ρPX⊥

p(1)T (ρ)
.

I The loop continues with probability

p(1)NT(ρ) = 1− p(1)T (ρ) = tr(PXρ). The program state after the
measurement:

ρ
(1)
mid =

PXρPX

p(1)NT(ρ)
.

I ρ
(1)
mid is fed to the unitary operation U:

ρ
(2)
in = Uρ

(1)
midU†

is returned. ρ
(2)
in will be used as the input state in the next step.

Execution of Quantum Loops
I Initial step: Performs measurement M on the input state ρ:

I The loop terminates with probability p(1)T (ρ) = tr(PX⊥ρ). The
output at this step:

ρ
(1)
out =

PX⊥ρPX⊥

p(1)T (ρ)
.

I The loop continues with probability

p(1)NT(ρ) = 1− p(1)T (ρ) = tr(PXρ). The program state after the
measurement:

ρ
(1)
mid =

PXρPX

p(1)NT(ρ)
.

I ρ
(1)
mid is fed to the unitary operation U:

ρ
(2)
in = Uρ

(1)
midU†

is returned. ρ
(2)
in will be used as the input state in the next step.

Execution of Quantum Loops
I Initial step: Performs measurement M on the input state ρ:

I The loop terminates with probability p(1)T (ρ) = tr(PX⊥ρ). The
output at this step:

ρ
(1)
out =

PX⊥ρPX⊥

p(1)T (ρ)
.

I The loop continues with probability

p(1)NT(ρ) = 1− p(1)T (ρ) = tr(PXρ). The program state after the
measurement:

ρ
(1)
mid =

PXρPX

p(1)NT(ρ)
.

I ρ
(1)
mid is fed to the unitary operation U:

ρ
(2)
in = Uρ

(1)
midU†

is returned. ρ
(2)
in will be used as the input state in the next step.

I Induction step: Suppose the loop has run n steps, it did not
terminate at the nth step: p(n)NT > 0. If ρ

(n+1)
in is the program state

at the end of the nth step, then in the (n + 1)th step:

I The termination probability: p(n+1)
T (ρ) = tr(PX⊥ρ

(n+1)
in). The

output at this step is

ρ
(n+1)
out =

PX⊥ρ
(n+1)
in PX⊥

p(n+1)
T (ρ)

.

I The loop continues to perform the unitary operation U on the
post-measurement state

ρ
(n+1)
mid =

PXρ
(n+1)
in PX

p(n+1)
NT (ρ)

with probability p(n+1)
NT (ρ) = 1− p(n+1)

T (ρ) = tr(PXρ
(n+1)
in). The

state ρ
(n+2)
in = Uρ

(n+1)
mid U† will be returned. It will be the input of

the (n + 2)th step.

I Induction step: Suppose the loop has run n steps, it did not
terminate at the nth step: p(n)NT > 0. If ρ

(n+1)
in is the program state

at the end of the nth step, then in the (n + 1)th step:
I The termination probability: p(n+1)

T (ρ) = tr(PX⊥ρ
(n+1)
in). The

output at this step is

ρ
(n+1)
out =

PX⊥ρ
(n+1)
in PX⊥

p(n+1)
T (ρ)

.

I The loop continues to perform the unitary operation U on the
post-measurement state

ρ
(n+1)
mid =

PXρ
(n+1)
in PX

p(n+1)
NT (ρ)

with probability p(n+1)
NT (ρ) = 1− p(n+1)

T (ρ) = tr(PXρ
(n+1)
in). The

state ρ
(n+2)
in = Uρ

(n+1)
mid U† will be returned. It will be the input of

the (n + 2)th step.

I Induction step: Suppose the loop has run n steps, it did not
terminate at the nth step: p(n)NT > 0. If ρ

(n+1)
in is the program state

at the end of the nth step, then in the (n + 1)th step:
I The termination probability: p(n+1)

T (ρ) = tr(PX⊥ρ
(n+1)
in). The

output at this step is

ρ
(n+1)
out =

PX⊥ρ
(n+1)
in PX⊥

p(n+1)
T (ρ)

.

I The loop continues to perform the unitary operation U on the
post-measurement state

ρ
(n+1)
mid =

PXρ
(n+1)
in PX

p(n+1)
NT (ρ)

with probability p(n+1)
NT (ρ) = 1− p(n+1)

T (ρ) = tr(PXρ
(n+1)
in). The

state ρ
(n+2)
in = Uρ

(n+1)
mid U† will be returned. It will be the input of

the (n + 2)th step.

Termination
1. If probability p(n)NT(ρ) = 0 for some positive integer n, then the

loop terminates from input ρ.

2. The nontermination probability of the loop from input ρ is

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ)

where

p(≤n)
NT (ρ) =

n

∏
i=1

p(i)NT(ρ)

is the probability that the loop does not terminate after n steps.
3. The loop almost surely terminates from input ρ whenever

nontermination probability pNT(ρ) = 0.

Terminating
A quantum loop is terminating (resp. almost surely terminating) if it
terminates (resp. almost surely terminates) from all input ρ ∈ D(H).

Termination
1. If probability p(n)NT(ρ) = 0 for some positive integer n, then the

loop terminates from input ρ.
2. The nontermination probability of the loop from input ρ is

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ)

where

p(≤n)
NT (ρ) =

n

∏
i=1

p(i)NT(ρ)

is the probability that the loop does not terminate after n steps.

3. The loop almost surely terminates from input ρ whenever
nontermination probability pNT(ρ) = 0.

Terminating
A quantum loop is terminating (resp. almost surely terminating) if it
terminates (resp. almost surely terminates) from all input ρ ∈ D(H).

Termination
1. If probability p(n)NT(ρ) = 0 for some positive integer n, then the

loop terminates from input ρ.
2. The nontermination probability of the loop from input ρ is

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ)

where

p(≤n)
NT (ρ) =

n

∏
i=1

p(i)NT(ρ)

is the probability that the loop does not terminate after n steps.
3. The loop almost surely terminates from input ρ whenever

nontermination probability pNT(ρ) = 0.

Terminating
A quantum loop is terminating (resp. almost surely terminating) if it
terminates (resp. almost surely terminates) from all input ρ ∈ D(H).

Computed Function

I The function F : D(H)→ D(H) computed by the loop:

F (ρ) =
∞

∑
n=1

p(≤n−1)
NT (ρ) · p(n)T (ρ) · ρ(n)out

for each ρ ∈ D(H).

I For operator A in Hilbert spaceH, subspace X ofH, the
restriction of A in X:

AX = PXAPX

I

p(≤n)
NT (ρ) = tr(Un−1

X ρXU†n−1
X)

I

F (ρ) = PX⊥ρPX⊥ + PX⊥U

(
∞

∑
n=0

Un
XρXU

†n
X

)
U†PX⊥

Computed Function

I The function F : D(H)→ D(H) computed by the loop:

F (ρ) =
∞

∑
n=1

p(≤n−1)
NT (ρ) · p(n)T (ρ) · ρ(n)out

for each ρ ∈ D(H).
I For operator A in Hilbert spaceH, subspace X ofH, the

restriction of A in X:
AX = PXAPX

I

p(≤n)
NT (ρ) = tr(Un−1

X ρXU†n−1
X)

I

F (ρ) = PX⊥ρPX⊥ + PX⊥U

(
∞

∑
n=0

Un
XρXU

†n
X

)
U†PX⊥

Computed Function

I The function F : D(H)→ D(H) computed by the loop:

F (ρ) =
∞

∑
n=1

p(≤n−1)
NT (ρ) · p(n)T (ρ) · ρ(n)out

for each ρ ∈ D(H).
I For operator A in Hilbert spaceH, subspace X ofH, the

restriction of A in X:
AX = PXAPX

I

p(≤n)
NT (ρ) = tr(Un−1

X ρXU†n−1
X)

I

F (ρ) = PX⊥ρPX⊥ + PX⊥U

(
∞

∑
n=0

Un
XρXU

†n
X

)
U†PX⊥

Computed Function

I The function F : D(H)→ D(H) computed by the loop:

F (ρ) =
∞

∑
n=1

p(≤n−1)
NT (ρ) · p(n)T (ρ) · ρ(n)out

for each ρ ∈ D(H).
I For operator A in Hilbert spaceH, subspace X ofH, the

restriction of A in X:
AX = PXAPX

I

p(≤n)
NT (ρ) = tr(Un−1

X ρXU†n−1
X)

I

F (ρ) = PX⊥ρPX⊥ + PX⊥U

(
∞

∑
n=0

Un
XρXU

†n
X

)
U†PX⊥

Termination Analysis

I Let ρ = ∑i piρi with pi > 0 for all i. Then the loop terminates
from input ρ if and only if it terminates from input ρi for all i.

I A quantum loop is terminating if and only if it terminates from
all pure input states.

Termination Analysis

I Let ρ = ∑i piρi with pi > 0 for all i. Then the loop terminates
from input ρ if and only if it terminates from input ρi for all i.

I A quantum loop is terminating if and only if it terminates from
all pure input states.

I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.
I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);
2. Un

XρXU†n
X = 0k×k for some nonnegative integer n, where 0k×k is the

(k× k)-zero matrix.

I The loop terminates from pure input state |ψ〉 if and only if
Un

X|ψ〉X = 0 for some nonnegative integer n, where 0 is the
k-dimensional zero vector.

I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.

I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);
2. Un

XρXU†n
X = 0k×k for some nonnegative integer n, where 0k×k is the

(k× k)-zero matrix.

I The loop terminates from pure input state |ψ〉 if and only if
Un

X|ψ〉X = 0 for some nonnegative integer n, where 0 is the
k-dimensional zero vector.

I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.
I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);
2. Un

XρXU†n
X = 0k×k for some nonnegative integer n, where 0k×k is the

(k× k)-zero matrix.
I The loop terminates from pure input state |ψ〉 if and only if

Un
X|ψ〉X = 0 for some nonnegative integer n, where 0 is the

k-dimensional zero vector.

I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.
I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);

2. Un
XρXU†n

X = 0k×k for some nonnegative integer n, where 0k×k is the
(k× k)-zero matrix.

I The loop terminates from pure input state |ψ〉 if and only if
Un

X|ψ〉X = 0 for some nonnegative integer n, where 0 is the
k-dimensional zero vector.

I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.
I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);
2. Un

XρXU†n
X = 0k×k for some nonnegative integer n, where 0k×k is the

(k× k)-zero matrix.

I The loop terminates from pure input state |ψ〉 if and only if
Un

X|ψ〉X = 0 for some nonnegative integer n, where 0 is the
k-dimensional zero vector.

I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.
I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);
2. Un

XρXU†n
X = 0k×k for some nonnegative integer n, where 0k×k is the

(k× k)-zero matrix.
I The loop terminates from pure input state |ψ〉 if and only if

Un
X|ψ〉X = 0 for some nonnegative integer n, where 0 is the

k-dimensional zero vector.

From Quantum Loop to Classical Loop

I The condition Un
X|ψ〉X = 0 is a termination condition for the

loop:
while v , 0 do v := UXv od

This loop must be understood as a classical computation in the
field of complex numbers.

I Let S be a nonsingular (k× k)-complex matrix. The following
statements are equivalent:

1. The above classical loop (with v ∈ Ck) terminates from input
v0 ∈ Ck.

2. The classical loop:

while v , 0 do v := (SUXS−1)v od

(with v ∈ Ck) terminates from input Sv0.

From Quantum Loop to Classical Loop

I The condition Un
X|ψ〉X = 0 is a termination condition for the

loop:
while v , 0 do v := UXv od

This loop must be understood as a classical computation in the
field of complex numbers.

I Let S be a nonsingular (k× k)-complex matrix. The following
statements are equivalent:

1. The above classical loop (with v ∈ Ck) terminates from input
v0 ∈ Ck.

2. The classical loop:

while v , 0 do v := (SUXS−1)v od

(with v ∈ Ck) terminates from input Sv0.

From Quantum Loop to Classical Loop

I The condition Un
X|ψ〉X = 0 is a termination condition for the

loop:
while v , 0 do v := UXv od

This loop must be understood as a classical computation in the
field of complex numbers.

I Let S be a nonsingular (k× k)-complex matrix. The following
statements are equivalent:

1. The above classical loop (with v ∈ Ck) terminates from input
v0 ∈ Ck.

2. The classical loop:

while v , 0 do v := (SUXS−1)v od

(with v ∈ Ck) terminates from input Sv0.

From Quantum Loop to Classical Loop

I The condition Un
X|ψ〉X = 0 is a termination condition for the

loop:
while v , 0 do v := UXv od

This loop must be understood as a classical computation in the
field of complex numbers.

I Let S be a nonsingular (k× k)-complex matrix. The following
statements are equivalent:

1. The above classical loop (with v ∈ Ck) terminates from input
v0 ∈ Ck.

2. The classical loop:

while v , 0 do v := (SUXS−1)v od

(with v ∈ Ck) terminates from input Sv0.

Jordan Normal Form Theorem
For any (k× k)-complex matrix A, there is a nonsingular
(k× k)-complex matrix S such that

A = SJ(A)S−1

where

J(A) =
l⊕

i=1

Jki
(λi)

= diag(Jk1(λ1), Jk2(λ2), . . . , Jkl
(λl))

=



Jk1(λ1)
Jk2(λ2)

. . .
. . .

Jkl
(λl)


is the Jordan normal form of A,

Jordan Normal Form Theorem (Continued)

∑l
i=1 ki = k,

Jki
(λi) =



λi 1
λi 1

.
. . . 1

λi


is a (ki × ki)-Jordan block for each 1 ≤ i ≤ l.

Technical Lemma

Let Jr(λ) be a (r× r)-Jordan block, v an r-dimensional complex
vector. Then

Jr(λ)
nv = 0

for some nonnegative integer n if and only if λ = 0 or v = 0.

Theorem
I The Jordan decomposition of UX: UX = SJ(UX)S−1, where

J(UX) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), . . . , Jkl

(λl)).

I Let S−1|ψ〉X be divided into l sub-vectors v1, v2, . . . , vl such that
the length of vi is ki.

I Then: the quantum loop terminates from input |ψ〉 if and only if
for each 1 ≤ i ≤ l, λi = 0 or vi = 0.

Corollary
The quantum loop is terminating if and only if UX has only zero
eigenvalues.

Theorem
I The Jordan decomposition of UX: UX = SJ(UX)S−1, where

J(UX) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), . . . , Jkl

(λl)).

I Let S−1|ψ〉X be divided into l sub-vectors v1, v2, . . . , vl such that
the length of vi is ki.

I Then: the quantum loop terminates from input |ψ〉 if and only if
for each 1 ≤ i ≤ l, λi = 0 or vi = 0.

Corollary
The quantum loop is terminating if and only if UX has only zero
eigenvalues.

Theorem
I The Jordan decomposition of UX: UX = SJ(UX)S−1, where

J(UX) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), . . . , Jkl

(λl)).

I Let S−1|ψ〉X be divided into l sub-vectors v1, v2, . . . , vl such that
the length of vi is ki.

I Then: the quantum loop terminates from input |ψ〉 if and only if
for each 1 ≤ i ≤ l, λi = 0 or vi = 0.

Corollary
The quantum loop is terminating if and only if UX has only zero
eigenvalues.

Almost sure termination
I Let ρ = ∑i piρi with pi > 0 for all i. Then the quantum loop

almost surely terminates from input ρ if and only if it almost
surely terminates from input ρi for all i.

I A quantum loop is almost surely terminating if and only if it
almost surely terminates from all pure input states.

I The quantum loop almost surely terminates from pure input
state |ψ〉 if and only if

lim
n→∞
||Un

X|ψ〉|| = 0.

I The quantum loop almost surely terminates from input |ψ〉 if
and only if for each 1 ≤ i ≤ l, |λi| < 1 or vi = 0.

I The quantum loop is almost surely terminating if and only if all
the eigenvalues of UX have norms less than 1.

Almost sure termination
I Let ρ = ∑i piρi with pi > 0 for all i. Then the quantum loop

almost surely terminates from input ρ if and only if it almost
surely terminates from input ρi for all i.

I A quantum loop is almost surely terminating if and only if it
almost surely terminates from all pure input states.

I The quantum loop almost surely terminates from pure input
state |ψ〉 if and only if

lim
n→∞
||Un

X|ψ〉|| = 0.

I The quantum loop almost surely terminates from input |ψ〉 if
and only if for each 1 ≤ i ≤ l, |λi| < 1 or vi = 0.

I The quantum loop is almost surely terminating if and only if all
the eigenvalues of UX have norms less than 1.

Almost sure termination
I Let ρ = ∑i piρi with pi > 0 for all i. Then the quantum loop

almost surely terminates from input ρ if and only if it almost
surely terminates from input ρi for all i.

I A quantum loop is almost surely terminating if and only if it
almost surely terminates from all pure input states.

I The quantum loop almost surely terminates from pure input
state |ψ〉 if and only if

lim
n→∞
||Un

X|ψ〉|| = 0.

I The quantum loop almost surely terminates from input |ψ〉 if
and only if for each 1 ≤ i ≤ l, |λi| < 1 or vi = 0.

I The quantum loop is almost surely terminating if and only if all
the eigenvalues of UX have norms less than 1.

Almost sure termination
I Let ρ = ∑i piρi with pi > 0 for all i. Then the quantum loop

almost surely terminates from input ρ if and only if it almost
surely terminates from input ρi for all i.

I A quantum loop is almost surely terminating if and only if it
almost surely terminates from all pure input states.

I The quantum loop almost surely terminates from pure input
state |ψ〉 if and only if

lim
n→∞
||Un

X|ψ〉|| = 0.

I The quantum loop almost surely terminates from input |ψ〉 if
and only if for each 1 ≤ i ≤ l, |λi| < 1 or vi = 0.

I The quantum loop is almost surely terminating if and only if all
the eigenvalues of UX have norms less than 1.

Almost sure termination
I Let ρ = ∑i piρi with pi > 0 for all i. Then the quantum loop

almost surely terminates from input ρ if and only if it almost
surely terminates from input ρi for all i.

I A quantum loop is almost surely terminating if and only if it
almost surely terminates from all pure input states.

I The quantum loop almost surely terminates from pure input
state |ψ〉 if and only if

lim
n→∞
||Un

X|ψ〉|| = 0.

I The quantum loop almost surely terminates from input |ψ〉 if
and only if for each 1 ≤ i ≤ l, |λi| < 1 or vi = 0.

I The quantum loop is almost surely terminating if and only if all
the eigenvalues of UX have norms less than 1.

General Quantum while-Loops

while M[q] = 1 do S od

where:
I M = {M0, M1} is a yes-no measurement;

I q is a quantum register;
I the loop body S is a general quantum program.

while M[q] = 1 do q := E [q] od.

Notation
For i = 0, 1, define quantum operation Ei:

Ei(σ) = MiσM†
i

General Quantum while-Loops

while M[q] = 1 do S od

where:
I M = {M0, M1} is a yes-no measurement;
I q is a quantum register;

I the loop body S is a general quantum program.

while M[q] = 1 do q := E [q] od.

Notation
For i = 0, 1, define quantum operation Ei:

Ei(σ) = MiσM†
i

General Quantum while-Loops

while M[q] = 1 do S od

where:
I M = {M0, M1} is a yes-no measurement;
I q is a quantum register;
I the loop body S is a general quantum program.

while M[q] = 1 do q := E [q] od.

Notation
For i = 0, 1, define quantum operation Ei:

Ei(σ) = MiσM†
i

Execution of Loops
Initial step: Perform the termination measurement {M0, M1} on the
input state ρ.
I The probability that the program terminates (the measurement

outcome is 0):
p(1)T (ρ) = tr[E0(ρ)].

The program state after termination:

ρ
(1)
out = E0(ρ)/p(1)T (ρ).

Encode probability p(1)T (ρ) and density operator ρ
(1)
out into a

partial density operator

p(1)T (ρ)ρ
(1)
out = E0(ρ).

So, E0(ρ) is the partial output state at the first step.

Execution of Loops (Continued)

I The probability that the program does not terminate (the
measurement outcome is 1):

p(1)NT(ρ) = tr[E1(ρ)]

The program state after the outcome 1 is obtained:

ρ
(1)
mid = E1(ρ)/p(1)NT(ρ).

It is transformed by the loop body E to

ρ
(2)
in = (E ◦ E1)(ρ)/p(1)NT(ρ),

upon which the second step will be executed.
Combine p(1)NT and ρ

(2)
in into a partial density operator

p(1)NT(ρ)ρ
(2)
in = (E ◦ E1)(ρ).

Execution of Loops (Continued)
Induction step: Write p(≤n)

NT = ∏n
i=1 p(i)NT for the probability that the

program does not terminate within n steps, where p(i)NT is the
probability that the program does not terminate at the ith step for
every 1 ≤ i ≤ n.
The program state after the nth measurement with outcome 1:

ρ
(n)
mid =

[
E1 ◦ (E ◦ E1)

n−1] (ρ)
p(≤n)

NT

It is transformed by the loop body E into

ρ
(n+1)
in =

(E ◦ E1)
n(ρ)

p(≤n)
NT

.

Combine p(≤n)
NT and ρ

(n+1)
in into a partial density operator

p(≤n)
NT (ρ)ρ

(n+1)
in = (E ◦ E1)

n(ρ).

Execution of Loops (Continued)

I The (n + 1)st step is executed upon ρ
(n+1)
in .

I The probability that the program terminates at the (n + 1)st step:

p(n+1)
T (ρ) = tr

[
E0

(
ρ
(n+1)
in

)]
.

I The probability that the program does not terminate within n steps
but it terminates at the (n + 1)st step:

q(n+1)
T (ρ) = tr ([E0 ◦ (E ◦ E1)

n] (ρ)) .

I The program state after the termination:

ρ
(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ)/q(n+1)
T (ρ).

I Combining q(n+1)
T (ρ) and ρ

(n+1)
out yields the partial output state of

the program at the (n + 1)st step:

q(n+1)
T (ρ)ρ

(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ).

Execution of Loops (Continued)

I The (n + 1)st step is executed upon ρ
(n+1)
in .

I The probability that the program terminates at the (n + 1)st step:

p(n+1)
T (ρ) = tr

[
E0

(
ρ
(n+1)
in

)]
.

I The probability that the program does not terminate within n steps
but it terminates at the (n + 1)st step:

q(n+1)
T (ρ) = tr ([E0 ◦ (E ◦ E1)

n] (ρ)) .

I The program state after the termination:

ρ
(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ)/q(n+1)
T (ρ).

I Combining q(n+1)
T (ρ) and ρ

(n+1)
out yields the partial output state of

the program at the (n + 1)st step:

q(n+1)
T (ρ)ρ

(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ).

Execution of Loops (Continued)

I The (n + 1)st step is executed upon ρ
(n+1)
in .

I The probability that the program terminates at the (n + 1)st step:

p(n+1)
T (ρ) = tr

[
E0

(
ρ
(n+1)
in

)]
.

I The probability that the program does not terminate within n steps
but it terminates at the (n + 1)st step:

q(n+1)
T (ρ) = tr ([E0 ◦ (E ◦ E1)

n] (ρ)) .

I The program state after the termination:

ρ
(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ)/q(n+1)
T (ρ).

I Combining q(n+1)
T (ρ) and ρ

(n+1)
out yields the partial output state of

the program at the (n + 1)st step:

q(n+1)
T (ρ)ρ

(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ).

Execution of Loops (Continued)

I The (n + 1)st step is executed upon ρ
(n+1)
in .

I The probability that the program terminates at the (n + 1)st step:

p(n+1)
T (ρ) = tr

[
E0

(
ρ
(n+1)
in

)]
.

I The probability that the program does not terminate within n steps
but it terminates at the (n + 1)st step:

q(n+1)
T (ρ) = tr ([E0 ◦ (E ◦ E1)

n] (ρ)) .

I The program state after the termination:

ρ
(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ)/q(n+1)
T (ρ).

I Combining q(n+1)
T (ρ) and ρ

(n+1)
out yields the partial output state of

the program at the (n + 1)st step:

q(n+1)
T (ρ)ρ

(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ).

Execution of Loops (Continued)

I The (n + 1)st step is executed upon ρ
(n+1)
in .

I The probability that the program terminates at the (n + 1)st step:

p(n+1)
T (ρ) = tr

[
E0

(
ρ
(n+1)
in

)]
.

I The probability that the program does not terminate within n steps
but it terminates at the (n + 1)st step:

q(n+1)
T (ρ) = tr ([E0 ◦ (E ◦ E1)

n] (ρ)) .

I The program state after the termination:

ρ
(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ)/q(n+1)
T (ρ).

I Combining q(n+1)
T (ρ) and ρ

(n+1)
out yields the partial output state of

the program at the (n + 1)st step:

q(n+1)
T (ρ)ρ

(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ).

Execution of Loops (Continued)

I The probability that the program does not terminate within
(n + 1) steps:

p(≤n+1)
NT (ρ) = tr([E1 ◦ (E ◦ E1)

n](ρ)).

Termination

1. The quantum loop terminates from input state ρ if probability
p(n)NT(ρ) = 0 for some positive integer n.

2. The loop almost surely terminates from input state ρ if
nontermination probability

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ) = 0

where p(≤n)
NT is the probability that the program does not

terminate within n steps.

Execution of Loops (Continued)

I The probability that the program does not terminate within
(n + 1) steps:

p(≤n+1)
NT (ρ) = tr([E1 ◦ (E ◦ E1)

n](ρ)).

Termination
1. The quantum loop terminates from input state ρ if probability

p(n)NT(ρ) = 0 for some positive integer n.

2. The loop almost surely terminates from input state ρ if
nontermination probability

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ) = 0

where p(≤n)
NT is the probability that the program does not

terminate within n steps.

Execution of Loops (Continued)

I The probability that the program does not terminate within
(n + 1) steps:

p(≤n+1)
NT (ρ) = tr([E1 ◦ (E ◦ E1)

n](ρ)).

Termination
1. The quantum loop terminates from input state ρ if probability

p(n)NT(ρ) = 0 for some positive integer n.
2. The loop almost surely terminates from input state ρ if

nontermination probability

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ) = 0

where p(≤n)
NT is the probability that the program does not

terminate within n steps.

Terminating
The quantum loop is terminating (resp. almost surely terminating) if
it terminates (resp. almost surely terminates) from any input ρ.

Computed Function
The function F : D(H)→ D(H) computed by the quantum loop:

F (ρ) =
∞

∑
n=1

q(n)T (ρ)ρ
(n)
out =

∞

∑
n=0

[
E0 ◦ (E ◦ E1)

n] (ρ)
for each ρ ∈ D(H), where

q(n)T = p(≤n−1)
NT p(n)T

is the probability that the program does not terminate within n− 1
steps but it terminate at the nth step.

Terminating
The quantum loop is terminating (resp. almost surely terminating) if
it terminates (resp. almost surely terminates) from any input ρ.

Computed Function
The function F : D(H)→ D(H) computed by the quantum loop:

F (ρ) =
∞

∑
n=1

q(n)T (ρ)ρ
(n)
out =

∞

∑
n=0

[
E0 ◦ (E ◦ E1)

n] (ρ)
for each ρ ∈ D(H), where

q(n)T = p(≤n−1)
NT p(n)T

is the probability that the program does not terminate within n− 1
steps but it terminate at the nth step.

Recursive Characterisation of Computed Function
The quantum operation F computed by a loop satisfies the recursive
equation:

F (ρ) = E0(ρ) +F [(E ◦ E1)(ρ)].

Matrix Representation of Quantum Operations
Suppose quantum operation E in a d-dimensional Hilbert spaceH
has the Kraus operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

Then the matrix representation of E is the d2 × d2 matrix:

M = ∑
i

Ei ⊗ E∗i ,

where A∗ stands for the conjugate of matrix A.

Recursive Characterisation of Computed Function
The quantum operation F computed by a loop satisfies the recursive
equation:

F (ρ) = E0(ρ) +F [(E ◦ E1)(ρ)].

Matrix Representation of Quantum Operations
Suppose quantum operation E in a d-dimensional Hilbert spaceH
has the Kraus operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

Then the matrix representation of E is the d2 × d2 matrix:

M = ∑
i

Ei ⊗ E∗i ,

where A∗ stands for the conjugate of matrix A.

Lemma
Write |Φ〉 = ∑j |jj〉 for the (unnormalized) maximally entangled state
inH⊗H, where {|j〉} is an orthonormal basis ofH. Let M be the
matrix representation of quantum operaion E . Then for any d× d
matrix A:

(E(A)⊗ I)|Φ〉 = M(A⊗ I)|Φ〉.

Notations
I Let the quantum operation E in the loop body has the

operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

I Let Ei (i = 0, 1) be the quantum operations defined by the
measurement operations M0, M1 in the loop guard: Ei = Mi ◦M†

i .
I Write G for the composition of E and E1: G = E ◦ E1.

Then:

I G has the operator-sum representation:

G(ρ) = ∑
i
(EiM1)ρ(M†

1E†
i).

I The matrix representations of E0 and G are:

N0 = M0 ⊗M∗0 ,

R = ∑
i
(EiM1)⊗ (EiM1)

∗ .

Notations
I Let the quantum operation E in the loop body has the

operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

I Let Ei (i = 0, 1) be the quantum operations defined by the
measurement operations M0, M1 in the loop guard: Ei = Mi ◦M†

i .

I Write G for the composition of E and E1: G = E ◦ E1.

Then:

I G has the operator-sum representation:

G(ρ) = ∑
i
(EiM1)ρ(M†

1E†
i).

I The matrix representations of E0 and G are:

N0 = M0 ⊗M∗0 ,

R = ∑
i
(EiM1)⊗ (EiM1)

∗ .

Notations
I Let the quantum operation E in the loop body has the

operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

I Let Ei (i = 0, 1) be the quantum operations defined by the
measurement operations M0, M1 in the loop guard: Ei = Mi ◦M†

i .
I Write G for the composition of E and E1: G = E ◦ E1.

Then:

I G has the operator-sum representation:

G(ρ) = ∑
i
(EiM1)ρ(M†

1E†
i).

I The matrix representations of E0 and G are:

N0 = M0 ⊗M∗0 ,

R = ∑
i
(EiM1)⊗ (EiM1)

∗ .

Notations
I Let the quantum operation E in the loop body has the

operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

I Let Ei (i = 0, 1) be the quantum operations defined by the
measurement operations M0, M1 in the loop guard: Ei = Mi ◦M†

i .
I Write G for the composition of E and E1: G = E ◦ E1.

Then:
I G has the operator-sum representation:

G(ρ) = ∑
i
(EiM1)ρ(M†

1E†
i).

I The matrix representations of E0 and G are:

N0 = M0 ⊗M∗0 ,

R = ∑
i
(EiM1)⊗ (EiM1)

∗ .

Notations
I Let the quantum operation E in the loop body has the

operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

I Let Ei (i = 0, 1) be the quantum operations defined by the
measurement operations M0, M1 in the loop guard: Ei = Mi ◦M†

i .
I Write G for the composition of E and E1: G = E ◦ E1.

Then:
I G has the operator-sum representation:

G(ρ) = ∑
i
(EiM1)ρ(M†

1E†
i).

I The matrix representations of E0 and G are:

N0 = M0 ⊗M∗0 ,

R = ∑
i
(EiM1)⊗ (EiM1)

∗ .

Lemma
I Suppose that the Jordan decomposition of R is

R = SJ(R)S−1

where S is a nonsingular matrix, and J(R) is the Jordan normal
form of R:

J(R) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), · · ·, Jkl

(λl)).

Then:

1. |λs| ≤ 1 for all 1 ≤ s ≤ l.
2. If |λs| = 1 then the sth Jordan block is 1-dimensional; that is,

ks = 1.

Lemma
I Suppose that the Jordan decomposition of R is

R = SJ(R)S−1

where S is a nonsingular matrix, and J(R) is the Jordan normal
form of R:

J(R) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), · · ·, Jkl

(λl)).

Then:
1. |λs| ≤ 1 for all 1 ≤ s ≤ l.

2. If |λs| = 1 then the sth Jordan block is 1-dimensional; that is,
ks = 1.

Lemma
I Suppose that the Jordan decomposition of R is

R = SJ(R)S−1

where S is a nonsingular matrix, and J(R) is the Jordan normal
form of R:

J(R) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), · · ·, Jkl

(λl)).

Then:
1. |λs| ≤ 1 for all 1 ≤ s ≤ l.
2. If |λs| = 1 then the sth Jordan block is 1-dimensional; that is,

ks = 1.

Lemma
1. Quantum loop terminates from input ρ if and only if

Rn(ρ⊗ I)|Φ〉 = 0

for some integer n ≥ 0;

2. Quantum loop almost surely terminates from input ρ if and only
if

lim
n→∞

Rn(ρ⊗ I)|Φ〉 = 0.

Theorem: Terminating and Almost Sure Terminating

1. If Rk|Φ〉 = 0 for some integer k ≥ 0, then quantum loop is
terminating. Conversely, if loop is terminating, then Rk|Φ〉 = 0
for all integer k ≥ k0, where k0 is the maximal size of Jordan
blocks of R corresponding to eigenvalue 0.

2. Quantum loop is almost surely terminating if and only if |Φ〉 is
orthogonal to all eigenvectors of R† corresponding to
eigenvalues λ with |λ| = 1.

Lemma
1. Quantum loop terminates from input ρ if and only if

Rn(ρ⊗ I)|Φ〉 = 0

for some integer n ≥ 0;
2. Quantum loop almost surely terminates from input ρ if and only

if
lim

n→∞
Rn(ρ⊗ I)|Φ〉 = 0.

Theorem: Terminating and Almost Sure Terminating

1. If Rk|Φ〉 = 0 for some integer k ≥ 0, then quantum loop is
terminating. Conversely, if loop is terminating, then Rk|Φ〉 = 0
for all integer k ≥ k0, where k0 is the maximal size of Jordan
blocks of R corresponding to eigenvalue 0.

2. Quantum loop is almost surely terminating if and only if |Φ〉 is
orthogonal to all eigenvectors of R† corresponding to
eigenvalues λ with |λ| = 1.

Lemma
1. Quantum loop terminates from input ρ if and only if

Rn(ρ⊗ I)|Φ〉 = 0

for some integer n ≥ 0;
2. Quantum loop almost surely terminates from input ρ if and only

if
lim

n→∞
Rn(ρ⊗ I)|Φ〉 = 0.

Theorem: Terminating and Almost Sure Terminating

1. If Rk|Φ〉 = 0 for some integer k ≥ 0, then quantum loop is
terminating. Conversely, if loop is terminating, then Rk|Φ〉 = 0
for all integer k ≥ k0, where k0 is the maximal size of Jordan
blocks of R corresponding to eigenvalue 0.

2. Quantum loop is almost surely terminating if and only if |Φ〉 is
orthogonal to all eigenvectors of R† corresponding to
eigenvalues λ with |λ| = 1.

Lemma
1. Quantum loop terminates from input ρ if and only if

Rn(ρ⊗ I)|Φ〉 = 0

for some integer n ≥ 0;
2. Quantum loop almost surely terminates from input ρ if and only

if
lim

n→∞
Rn(ρ⊗ I)|Φ〉 = 0.

Theorem: Terminating and Almost Sure Terminating

1. If Rk|Φ〉 = 0 for some integer k ≥ 0, then quantum loop is
terminating. Conversely, if loop is terminating, then Rk|Φ〉 = 0
for all integer k ≥ k0, where k0 is the maximal size of Jordan
blocks of R corresponding to eigenvalue 0.

2. Quantum loop is almost surely terminating if and only if |Φ〉 is
orthogonal to all eigenvectors of R† corresponding to
eigenvalues λ with |λ| = 1.

Expectation of Observables at the Outputs

I The expectation tr(PF (ρ)) of observable P in the output state
F (ρ).

I Its computation depends on the convergence of power series

∑
n

Rn

where R is the matrix representation of G = E ◦ E1.
I This series may not converge when some eigenvalues of R has

module 1.
I Idea to overcome this objection: modify the Jordan normal form

J(R) of R by vanishing the Jordan blocks corresponding to those
eigenvalues with module 1: N = SJ(N)S−1

J(N) = diag(J′1, J′2, · · ·, J′3),

J′s =

{
0 if |λs| = 1,
Jks(λs) otherwise.

Expectation of Observables at the Outputs

I The expectation tr(PF (ρ)) of observable P in the output state
F (ρ).

I Its computation depends on the convergence of power series

∑
n

Rn

where R is the matrix representation of G = E ◦ E1.

I This series may not converge when some eigenvalues of R has
module 1.

I Idea to overcome this objection: modify the Jordan normal form
J(R) of R by vanishing the Jordan blocks corresponding to those
eigenvalues with module 1: N = SJ(N)S−1

J(N) = diag(J′1, J′2, · · ·, J′3),

J′s =

{
0 if |λs| = 1,
Jks(λs) otherwise.

Expectation of Observables at the Outputs

I The expectation tr(PF (ρ)) of observable P in the output state
F (ρ).

I Its computation depends on the convergence of power series

∑
n

Rn

where R is the matrix representation of G = E ◦ E1.
I This series may not converge when some eigenvalues of R has

module 1.

I Idea to overcome this objection: modify the Jordan normal form
J(R) of R by vanishing the Jordan blocks corresponding to those
eigenvalues with module 1: N = SJ(N)S−1

J(N) = diag(J′1, J′2, · · ·, J′3),

J′s =

{
0 if |λs| = 1,
Jks(λs) otherwise.

Expectation of Observables at the Outputs

I The expectation tr(PF (ρ)) of observable P in the output state
F (ρ).

I Its computation depends on the convergence of power series

∑
n

Rn

where R is the matrix representation of G = E ◦ E1.
I This series may not converge when some eigenvalues of R has

module 1.
I Idea to overcome this objection: modify the Jordan normal form

J(R) of R by vanishing the Jordan blocks corresponding to those
eigenvalues with module 1: N = SJ(N)S−1

J(N) = diag(J′1, J′2, · · ·, J′3),

J′s =

{
0 if |λs| = 1,
Jks(λs) otherwise.

Lemma
For any integer n ≥ 0:

N0Rn = N0Nn,

where N0 = M0 ⊗M∗0 is the matrix representation of E0.

Theorem
The expectation of observable P in the output state F (ρ) of quantum
loop with input state ρ:

tr(PF (ρ)) = 〈Φ|(P⊗ I)N0(I⊗ I−N)−1(ρ⊗ I)|Φ〉.

Lemma
For any integer n ≥ 0:

N0Rn = N0Nn,

where N0 = M0 ⊗M∗0 is the matrix representation of E0.

Theorem
The expectation of observable P in the output state F (ρ) of quantum
loop with input state ρ:

tr(PF (ρ)) = 〈Φ|(P⊗ I)N0(I⊗ I−N)−1(ρ⊗ I)|Φ〉.

Average Running Time

I The average running time loop with input state ρ:

∞

∑
n=1

np(n)T

where for each n ≥ 1,

p(n)T = tr
[(
E0 ◦ (E ◦ E1)

n−1
)
(ρ)
]
= tr

[(
E0 ◦ Gn−1

)
(ρ)
]

is the probability that the loop terminates at the nth step.

Theorem
The average running time of quantum loop with input state ρ:

〈Φ|N0(I⊗ I−N)−2(ρ⊗ I)|Φ〉.

Average Running Time

I The average running time loop with input state ρ:

∞

∑
n=1

np(n)T

where for each n ≥ 1,

p(n)T = tr
[(
E0 ◦ (E ◦ E1)

n−1
)
(ρ)
]
= tr

[(
E0 ◦ Gn−1

)
(ρ)
]

is the probability that the loop terminates at the nth step.

Theorem
The average running time of quantum loop with input state ρ:

〈Φ|N0(I⊗ I−N)−2(ρ⊗ I)|Φ〉.

Example: Quantum Walk on a Circle

I LetHd be the direction space — a 2-dimensional Hilbert space
with orthonormal basis state |L〉 and |R〉, indicating directions
Left and Right.

I The n different positions on the n-circle are labelled by numbers
0, 1, ..., n− 1. LetHp be an n-dimensional Hilbert space with
orthonormal basis states |0〉, |1〉, ..., |n− 1〉.

I The state space of the quantum walk: H = Hd ⊗Hp.
I The initial state: |L〉|0〉.
I This walk has an absorbing boundary at position 1.

Example: Quantum Walk on a Circle

I LetHd be the direction space — a 2-dimensional Hilbert space
with orthonormal basis state |L〉 and |R〉, indicating directions
Left and Right.

I The n different positions on the n-circle are labelled by numbers
0, 1, ..., n− 1. LetHp be an n-dimensional Hilbert space with
orthonormal basis states |0〉, |1〉, ..., |n− 1〉.

I The state space of the quantum walk: H = Hd ⊗Hp.
I The initial state: |L〉|0〉.
I This walk has an absorbing boundary at position 1.

Example: Quantum Walk on a Circle

I LetHd be the direction space — a 2-dimensional Hilbert space
with orthonormal basis state |L〉 and |R〉, indicating directions
Left and Right.

I The n different positions on the n-circle are labelled by numbers
0, 1, ..., n− 1. LetHp be an n-dimensional Hilbert space with
orthonormal basis states |0〉, |1〉, ..., |n− 1〉.

I The state space of the quantum walk: H = Hd ⊗Hp.

I The initial state: |L〉|0〉.
I This walk has an absorbing boundary at position 1.

Example: Quantum Walk on a Circle

I LetHd be the direction space — a 2-dimensional Hilbert space
with orthonormal basis state |L〉 and |R〉, indicating directions
Left and Right.

I The n different positions on the n-circle are labelled by numbers
0, 1, ..., n− 1. LetHp be an n-dimensional Hilbert space with
orthonormal basis states |0〉, |1〉, ..., |n− 1〉.

I The state space of the quantum walk: H = Hd ⊗Hp.
I The initial state: |L〉|0〉.

I This walk has an absorbing boundary at position 1.

Example: Quantum Walk on a Circle

I LetHd be the direction space — a 2-dimensional Hilbert space
with orthonormal basis state |L〉 and |R〉, indicating directions
Left and Right.

I The n different positions on the n-circle are labelled by numbers
0, 1, ..., n− 1. LetHp be an n-dimensional Hilbert space with
orthonormal basis states |0〉, |1〉, ..., |n− 1〉.

I The state space of the quantum walk: H = Hd ⊗Hp.
I The initial state: |L〉|0〉.
I This walk has an absorbing boundary at position 1.

Example: Quantum Walk on a Circle, Continued
Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current
position is 1. If the outcome is “yes”, then the walk terminates;
otherwise, it continues. This measurement models the absorbing
boundary:

M = {Myes = Id ⊗ |1〉〈1|, Mno = I−Myes}.

2. A “coin-tossing” operator

H =
1√

2

(
1 1
1 −1

)
is applied in the direction spaceHd.

3. A shift operator

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|

is performed in the spaceH.

Example: Quantum Walk on a Circle, Continued
Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current
position is 1. If the outcome is “yes”, then the walk terminates;
otherwise, it continues. This measurement models the absorbing
boundary:

M = {Myes = Id ⊗ |1〉〈1|, Mno = I−Myes}.

2. A “coin-tossing” operator

H =
1√

2

(
1 1
1 −1

)
is applied in the direction spaceHd.

3. A shift operator

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|

is performed in the spaceH.

Example: Quantum Walk on a Circle, Continued
Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current
position is 1. If the outcome is “yes”, then the walk terminates;
otherwise, it continues. This measurement models the absorbing
boundary:

M = {Myes = Id ⊗ |1〉〈1|, Mno = I−Myes}.

2. A “coin-tossing” operator

H =
1√

2

(
1 1
1 −1

)
is applied in the direction spaceHd.

3. A shift operator

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|

is performed in the spaceH.

Example: Quantum Walk on a Circle, Continued

I Quantum while-loop:

while M[d, p] = yes do d, p := W[d, p] od

where:

I quantum variables d, p denotes direction and position, respectively;
I the single-step walk operator: W = S(H⊗ Ip).

I A MATLAB program shows that average running time is n for
n < 30.

I Question: The average running time is n for all n ≥ 30?

Example: Quantum Walk on a Circle, Continued

I Quantum while-loop:

while M[d, p] = yes do d, p := W[d, p] od

where:
I quantum variables d, p denotes direction and position, respectively;

I the single-step walk operator: W = S(H⊗ Ip).
I A MATLAB program shows that average running time is n for

n < 30.
I Question: The average running time is n for all n ≥ 30?

Example: Quantum Walk on a Circle, Continued

I Quantum while-loop:

while M[d, p] = yes do d, p := W[d, p] od

where:
I quantum variables d, p denotes direction and position, respectively;
I the single-step walk operator: W = S(H⊗ Ip).

I A MATLAB program shows that average running time is n for
n < 30.

I Question: The average running time is n for all n ≥ 30?

Example: Quantum Walk on a Circle, Continued

I Quantum while-loop:

while M[d, p] = yes do d, p := W[d, p] od

where:
I quantum variables d, p denotes direction and position, respectively;
I the single-step walk operator: W = S(H⊗ Ip).

I A MATLAB program shows that average running time is n for
n < 30.

I Question: The average running time is n for all n ≥ 30?

Example: Quantum Walk on a Circle, Continued

I Quantum while-loop:

while M[d, p] = yes do d, p := W[d, p] od

where:
I quantum variables d, p denotes direction and position, respectively;
I the single-step walk operator: W = S(H⊗ Ip).

I A MATLAB program shows that average running time is n for
n < 30.

I Question: The average running time is n for all n ≥ 30?

	Analysis of Quantum Loops
	Quantum while-Loops with Unitary Bodies
	General Quantum while-Loops

