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Quantum while-Loops with Unitary Bodies

S ≡ while M[q] = 1 do q := U[q] od

where:
I q denotes quantum register q1, . . . , qn, its state Hilbert space:

H =
n⊗

i=1

Hqi

I the loop body is unitary transformation q := U[q] inH;
I the yes-no measurement M = {M0, M1} in the loop guard is

projective: M0 = PX⊥ , M1 = PX with X being a subspace ofH,
X⊥ being the orthocomplement of X.
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Execution of Quantum Loops
I Initial step: Performs measurement M on the input state ρ:

I The loop terminates with probability p(1)T (ρ) = tr(PX⊥ρ). The
output at this step:

ρ
(1)
out =

PX⊥ρPX⊥

p(1)T (ρ)
.

I The loop continues with probability

p(1)NT(ρ) = 1− p(1)T (ρ) = tr(PXρ). The program state after the
measurement:

ρ
(1)
mid =

PXρPX

p(1)NT(ρ)
.

I ρ
(1)
mid is fed to the unitary operation U:

ρ
(2)
in = Uρ

(1)
midU†

is returned. ρ
(2)
in will be used as the input state in the next step.
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I Induction step: Suppose the loop has run n steps, it did not
terminate at the nth step: p(n)NT > 0. If ρ

(n+1)
in is the program state

at the end of the nth step, then in the (n + 1)th step:

I The termination probability: p(n+1)
T (ρ) = tr(PX⊥ρ

(n+1)
in ). The

output at this step is

ρ
(n+1)
out =

PX⊥ρ
(n+1)
in PX⊥

p(n+1)
T (ρ)

.

I The loop continues to perform the unitary operation U on the
post-measurement state

ρ
(n+1)
mid =

PXρ
(n+1)
in PX

p(n+1)
NT (ρ)

with probability p(n+1)
NT (ρ) = 1− p(n+1)

T (ρ) = tr(PXρ
(n+1)
in ). The

state ρ
(n+2)
in = Uρ

(n+1)
mid U† will be returned. It will be the input of

the (n + 2)th step.
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Termination
1. If probability p(n)NT(ρ) = 0 for some positive integer n, then the

loop terminates from input ρ.

2. The nontermination probability of the loop from input ρ is

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ)

where

p(≤n)
NT (ρ) =

n

∏
i=1

p(i)NT(ρ)

is the probability that the loop does not terminate after n steps.
3. The loop almost surely terminates from input ρ whenever

nontermination probability pNT(ρ) = 0.

Terminating
A quantum loop is terminating (resp. almost surely terminating) if it
terminates (resp. almost surely terminates) from all input ρ ∈ D(H).
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Computed Function

I The function F : D(H)→ D(H) computed by the loop:

F (ρ) =
∞

∑
n=1

p(≤n−1)
NT (ρ) · p(n)T (ρ) · ρ(n)out

for each ρ ∈ D(H).

I For operator A in Hilbert spaceH, subspace X ofH, the
restriction of A in X:

AX = PXAPX

I

p(≤n)
NT (ρ) = tr(Un−1

X ρXU†n−1
X )

I

F (ρ) = PX⊥ρPX⊥ + PX⊥U

(
∞

∑
n=0

Un
XρXU

†n
X

)
U†PX⊥
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Termination Analysis

I Let ρ = ∑i piρi with pi > 0 for all i. Then the loop terminates
from input ρ if and only if it terminates from input ρi for all i.

I A quantum loop is terminating if and only if it terminates from
all pure input states.
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I Let {|m1〉, . . . , |ml〉} be an orthonormal basis ofH such that

k

∑
i=1
|mi〉〈mi| = PX,

l

∑
i=k+1

|mi〉〈mi| = PX⊥

I Write |ψ〉X for (the vector representation of) projection PX|ψ〉.
I The following statements are equivalent:

1. The loop terminates from input ρ ∈ D(H);
2. Un

XρXU†n
X = 0k×k for some nonnegative integer n, where 0k×k is the

(k× k)-zero matrix.

I The loop terminates from pure input state |ψ〉 if and only if
Un

X|ψ〉X = 0 for some nonnegative integer n, where 0 is the
k-dimensional zero vector.
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From Quantum Loop to Classical Loop

I The condition Un
X|ψ〉X = 0 is a termination condition for the

loop:
while v , 0 do v := UXv od

This loop must be understood as a classical computation in the
field of complex numbers.

I Let S be a nonsingular (k× k)-complex matrix. The following
statements are equivalent:

1. The above classical loop (with v ∈ Ck) terminates from input
v0 ∈ Ck.

2. The classical loop:

while v , 0 do v := (SUXS−1)v od

(with v ∈ Ck) terminates from input Sv0.
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Jordan Normal Form Theorem
For any (k× k)-complex matrix A, there is a nonsingular
(k× k)-complex matrix S such that

A = SJ(A)S−1

where

J(A) =
l⊕

i=1

Jki
(λi)

= diag(Jk1(λ1), Jk2(λ2), . . . , Jkl
(λl))

=



Jk1(λ1)
Jk2(λ2)

. . .
. . .

Jkl
(λl)


is the Jordan normal form of A,



Jordan Normal Form Theorem (Continued)

∑l
i=1 ki = k,

Jki
(λi) =



λi 1
λi 1

. . . . . .
. . . 1

λi


is a (ki × ki)-Jordan block for each 1 ≤ i ≤ l.



Technical Lemma

Let Jr(λ) be a (r× r)-Jordan block, v an r-dimensional complex
vector. Then

Jr(λ)
nv = 0

for some nonnegative integer n if and only if λ = 0 or v = 0.



Theorem
I The Jordan decomposition of UX: UX = SJ(UX)S−1, where

J(UX) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), . . . , Jkl

(λl)).

I Let S−1|ψ〉X be divided into l sub-vectors v1, v2, . . . , vl such that
the length of vi is ki.

I Then: the quantum loop terminates from input |ψ〉 if and only if
for each 1 ≤ i ≤ l, λi = 0 or vi = 0.

Corollary
The quantum loop is terminating if and only if UX has only zero
eigenvalues.
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Almost sure termination
I Let ρ = ∑i piρi with pi > 0 for all i. Then the quantum loop

almost surely terminates from input ρ if and only if it almost
surely terminates from input ρi for all i.

I A quantum loop is almost surely terminating if and only if it
almost surely terminates from all pure input states.

I The quantum loop almost surely terminates from pure input
state |ψ〉 if and only if

lim
n→∞
||Un

X|ψ〉|| = 0.

I The quantum loop almost surely terminates from input |ψ〉 if
and only if for each 1 ≤ i ≤ l, |λi| < 1 or vi = 0.

I The quantum loop is almost surely terminating if and only if all
the eigenvalues of UX have norms less than 1.
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General Quantum while-Loops

while M[q] = 1 do S od

where:
I M = {M0, M1} is a yes-no measurement;

I q is a quantum register;
I the loop body S is a general quantum program.

while M[q] = 1 do q := E [q] od.

Notation
For i = 0, 1, define quantum operation Ei:

Ei(σ) = MiσM†
i
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Execution of Loops
Initial step: Perform the termination measurement {M0, M1} on the
input state ρ.
I The probability that the program terminates (the measurement

outcome is 0):
p(1)T (ρ) = tr[E0(ρ)].

The program state after termination:

ρ
(1)
out = E0(ρ)/p(1)T (ρ).

Encode probability p(1)T (ρ) and density operator ρ
(1)
out into a

partial density operator

p(1)T (ρ)ρ
(1)
out = E0(ρ).

So, E0(ρ) is the partial output state at the first step.



Execution of Loops (Continued)

I The probability that the program does not terminate (the
measurement outcome is 1):

p(1)NT(ρ) = tr[E1(ρ)]

The program state after the outcome 1 is obtained:

ρ
(1)
mid = E1(ρ)/p(1)NT(ρ).

It is transformed by the loop body E to

ρ
(2)
in = (E ◦ E1)(ρ)/p(1)NT(ρ),

upon which the second step will be executed.
Combine p(1)NT and ρ

(2)
in into a partial density operator

p(1)NT(ρ)ρ
(2)
in = (E ◦ E1)(ρ).



Execution of Loops (Continued)
Induction step: Write p(≤n)

NT = ∏n
i=1 p(i)NT for the probability that the

program does not terminate within n steps, where p(i)NT is the
probability that the program does not terminate at the ith step for
every 1 ≤ i ≤ n.
The program state after the nth measurement with outcome 1:

ρ
(n)
mid =

[
E1 ◦ (E ◦ E1)

n−1] (ρ)
p(≤n)

NT

It is transformed by the loop body E into

ρ
(n+1)
in =

(E ◦ E1)
n(ρ)

p(≤n)
NT

.

Combine p(≤n)
NT and ρ

(n+1)
in into a partial density operator

p(≤n)
NT (ρ)ρ

(n+1)
in = (E ◦ E1)

n(ρ).



Execution of Loops (Continued)

I The (n + 1)st step is executed upon ρ
(n+1)
in .

I The probability that the program terminates at the (n + 1)st step:

p(n+1)
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[
E0

(
ρ
(n+1)
in

)]
.
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T (ρ) = tr ([E0 ◦ (E ◦ E1)

n] (ρ)) .

I The program state after the termination:

ρ
(n+1)
out = [E0 ◦ (E ◦ E1)

n](ρ)/q(n+1)
T (ρ).

I Combining q(n+1)
T (ρ) and ρ

(n+1)
out yields the partial output state of

the program at the (n + 1)st step:
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Execution of Loops (Continued)

I The probability that the program does not terminate within
(n + 1) steps:

p(≤n+1)
NT (ρ) = tr([E1 ◦ (E ◦ E1)

n](ρ)).

Termination

1. The quantum loop terminates from input state ρ if probability
p(n)NT(ρ) = 0 for some positive integer n.

2. The loop almost surely terminates from input state ρ if
nontermination probability

pNT(ρ) = lim
n→∞

p(≤n)
NT (ρ) = 0

where p(≤n)
NT is the probability that the program does not

terminate within n steps.
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Terminating
The quantum loop is terminating (resp. almost surely terminating) if
it terminates (resp. almost surely terminates) from any input ρ.

Computed Function
The function F : D(H)→ D(H) computed by the quantum loop:

F (ρ) =
∞

∑
n=1

q(n)T (ρ)ρ
(n)
out =

∞

∑
n=0

[
E0 ◦ (E ◦ E1)

n] (ρ)
for each ρ ∈ D(H), where

q(n)T = p(≤n−1)
NT p(n)T

is the probability that the program does not terminate within n− 1
steps but it terminate at the nth step.
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Recursive Characterisation of Computed Function
The quantum operation F computed by a loop satisfies the recursive
equation:

F (ρ) = E0(ρ) +F [(E ◦ E1)(ρ)].

Matrix Representation of Quantum Operations
Suppose quantum operation E in a d-dimensional Hilbert spaceH
has the Kraus operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

Then the matrix representation of E is the d2 × d2 matrix:

M = ∑
i

Ei ⊗ E∗i ,

where A∗ stands for the conjugate of matrix A.
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Lemma
Write |Φ〉 = ∑j |jj〉 for the (unnormalized) maximally entangled state
inH⊗H, where {|j〉} is an orthonormal basis ofH. Let M be the
matrix representation of quantum operaion E . Then for any d× d
matrix A:

(E(A)⊗ I)|Φ〉 = M(A⊗ I)|Φ〉.



Notations
I Let the quantum operation E in the loop body has the

operator-sum representation:

E(ρ) = ∑
i

EiρE†
i .

I Let Ei (i = 0, 1) be the quantum operations defined by the
measurement operations M0, M1 in the loop guard: Ei = Mi ◦M†

i .
I Write G for the composition of E and E1: G = E ◦ E1.

Then:

I G has the operator-sum representation:

G(ρ) = ∑
i
(EiM1)ρ(M†

1E†
i ).

I The matrix representations of E0 and G are:

N0 = M0 ⊗M∗0 ,

R = ∑
i
(EiM1)⊗ (EiM1)

∗ .
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Lemma
I Suppose that the Jordan decomposition of R is

R = SJ(R)S−1

where S is a nonsingular matrix, and J(R) is the Jordan normal
form of R:

J(R) =
l⊕

i=1

Jki
(λi) = diag(Jk1(λ1), Jk2(λ2), · · ·, Jkl

(λl)).

Then:

1. |λs| ≤ 1 for all 1 ≤ s ≤ l.
2. If |λs| = 1 then the sth Jordan block is 1-dimensional; that is,

ks = 1.
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Lemma
1. Quantum loop terminates from input ρ if and only if

Rn(ρ⊗ I)|Φ〉 = 0

for some integer n ≥ 0;

2. Quantum loop almost surely terminates from input ρ if and only
if

lim
n→∞

Rn(ρ⊗ I)|Φ〉 = 0.

Theorem: Terminating and Almost Sure Terminating

1. If Rk|Φ〉 = 0 for some integer k ≥ 0, then quantum loop is
terminating. Conversely, if loop is terminating, then Rk|Φ〉 = 0
for all integer k ≥ k0, where k0 is the maximal size of Jordan
blocks of R corresponding to eigenvalue 0.

2. Quantum loop is almost surely terminating if and only if |Φ〉 is
orthogonal to all eigenvectors of R† corresponding to
eigenvalues λ with |λ| = 1.
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Expectation of Observables at the Outputs

I The expectation tr(PF (ρ)) of observable P in the output state
F (ρ).

I Its computation depends on the convergence of power series

∑
n

Rn

where R is the matrix representation of G = E ◦ E1.
I This series may not converge when some eigenvalues of R has

module 1.
I Idea to overcome this objection: modify the Jordan normal form

J(R) of R by vanishing the Jordan blocks corresponding to those
eigenvalues with module 1: N = SJ(N)S−1

J(N) = diag(J′1, J′2, · · ·, J′3),

J′s =

{
0 if |λs| = 1,
Jks(λs) otherwise.
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Lemma
For any integer n ≥ 0:

N0Rn = N0Nn,

where N0 = M0 ⊗M∗0 is the matrix representation of E0.

Theorem
The expectation of observable P in the output state F (ρ) of quantum
loop with input state ρ:

tr(PF (ρ)) = 〈Φ|(P⊗ I)N0(I⊗ I−N)−1(ρ⊗ I)|Φ〉.
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Average Running Time

I The average running time loop with input state ρ:

∞

∑
n=1

np(n)T

where for each n ≥ 1,

p(n)T = tr
[(
E0 ◦ (E ◦ E1)

n−1
)
(ρ)
]
= tr

[(
E0 ◦ Gn−1

)
(ρ)
]

is the probability that the loop terminates at the nth step.

Theorem
The average running time of quantum loop with input state ρ:

〈Φ|N0(I⊗ I−N)−2(ρ⊗ I)|Φ〉.
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Example: Quantum Walk on a Circle

I LetHd be the direction space — a 2-dimensional Hilbert space
with orthonormal basis state |L〉 and |R〉, indicating directions
Left and Right.

I The n different positions on the n-circle are labelled by numbers
0, 1, ..., n− 1. LetHp be an n-dimensional Hilbert space with
orthonormal basis states |0〉, |1〉, ..., |n− 1〉.

I The state space of the quantum walk: H = Hd ⊗Hp.
I The initial state: |L〉|0〉.
I This walk has an absorbing boundary at position 1.
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Example: Quantum Walk on a Circle, Continued
Eeach step of the walk consists of:

1. Measure the position of the system to see whether the current
position is 1. If the outcome is “yes”, then the walk terminates;
otherwise, it continues. This measurement models the absorbing
boundary:

M = {Myes = Id ⊗ |1〉〈1|, Mno = I−Myes}.

2. A “coin-tossing” operator

H =
1√

2

(
1 1
1 −1

)
is applied in the direction spaceHd.

3. A shift operator

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|

is performed in the spaceH.
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Example: Quantum Walk on a Circle, Continued

I Quantum while-loop:

while M[d, p] = yes do d, p := W[d, p] od

where:

I quantum variables d, p denotes direction and position, respectively;
I the single-step walk operator: W = S(H⊗ Ip).

I A MATLAB program shows that average running time is n for
n < 30.

I Question: The average running time is n for all n ≥ 30?
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